Difference between revisions of "LabVIEW Primer"

From Advanced Projects Lab
Jump to: navigation, search
Line 14: Line 14:
  
 
LabVIEW also includes extensive hardware support for interfacing with cameras, sensors, and other devices.  Users can interface to hardware by either writing direct bus commands (USB, GPIB, Serial) or using high-level, device-specific, drivers that provide native LabVIEW function nodes for controlling the device.  LabVIEW's ability to interact with and control different devices is essential to experimental physics and lab work in general.
 
LabVIEW also includes extensive hardware support for interfacing with cameras, sensors, and other devices.  Users can interface to hardware by either writing direct bus commands (USB, GPIB, Serial) or using high-level, device-specific, drivers that provide native LabVIEW function nodes for controlling the device.  LabVIEW's ability to interact with and control different devices is essential to experimental physics and lab work in general.
 +
 +
== Learning from the Text ==
 +
 +
The first four chapters of the text are considered to be essential for understanding the basics of LabVIEW.  They are also meant to be completed sequentially as each section builds on previous sections.  Chapters after number 4 are meant to be more like independent modules that can be completed in any desired order.
  
 
== Chapters from the Text ==
 
== Chapters from the Text ==

Revision as of 13:08, 3 April 2016

Textbook for this Primer

This LabVIEW primer is based off of the book "Hands-On Introduction to LabVIEW for Scientists and Engineers" by John Essick. Two copies of the book can be found in the lab to the right of the computer setup.

Accessing LabVIEW on Our Computers

Currently LabVIEW is installed on one machine in the lab. When looking at the desktop computers straight on, the rightmost computer closest to the books contains an installation of LabVIEW. This computer runs Linux but has Windows 7 installed as a virtual machine. Our version of LabVIEW is installed on Windows, so the Windows virtual machine must be ran before LabVIEW can be accessed. Running Windows is simple; there is a shortcut on the Linux desktop called "Hankwin" which can be clicked to open. Once Windows is running, LabVIEW can be found in the Programs menu.

What is LabVIEW?

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a development environment and system-design platform for a visual programming language called "G". LabVIEW is commonly used by scientists and engineers for the purposes of data acquisition, instrument control, and industrial automation. It is developed and maintained by National Instruments.

LabVIEW is made for engineering and experimental science. It is a programming language and underneath the hood it does most things similarly to other text-based programming languages, but all of this information is presented to the user very differently. LabVIEW is a visual and graphical programming language. Instead of pages of text, LabVIEW source code appears as a graphical block-diagram. These graphical block-diagrams contain function-nodes (analogous to functions in Python for example) that the user draws virtual wires between. These virtual wires between different function nodes allow the transfer of variables. This style of programming is called dataflow programming.

LabVIEW also includes extensive hardware support for interfacing with cameras, sensors, and other devices. Users can interface to hardware by either writing direct bus commands (USB, GPIB, Serial) or using high-level, device-specific, drivers that provide native LabVIEW function nodes for controlling the device. LabVIEW's ability to interact with and control different devices is essential to experimental physics and lab work in general.

Learning from the Text

The first four chapters of the text are considered to be essential for understanding the basics of LabVIEW. They are also meant to be completed sequentially as each section builds on previous sections. Chapters after number 4 are meant to be more like independent modules that can be completed in any desired order.

Chapters from the Text

Chapter 1 - The While Loop and Waveform Chart

Chapter 2 - The For Loop and Waveform Graph

Chapter 3 - The Mathscript Node and XY Graph

Chapter 4 - Data Acquisition Using DAQ Assistant

Chapter 5 - Data Files and Character Strings

Chapter 6 - Shift Registers

Chapter 7 - The Case Structure

Chapter 8 - Data Dependency and the Sequence Structure

Chapter 9 - Analysis VIs: Curve Fitting

Chapter 10 - Analysis VIs: Fast Fourier Transform

Chapter 11 - Data Acquisition and Generation Using DAQmx VIs

Chapter 12 - PID Temperature Control Project

Chapter 13 - Control of Stand-Alone Instruments

Useful Links

Official National Instruments Video Tutorials

This LabVIEW tutorial is entirely contained within 1 PDF file, making it easy to download and view as desired.