Difference between revisions of "OAM & Surface Plasmon Resonance"
m (Bsboggs moved page Surface Plasmon Resonance to OAM & Surface Plasmon Resonance) |
|||
Line 1: | Line 1: | ||
== Background and Goal == | == Background and Goal == | ||
− | The ultimate goal of the Surface Plasmon Resonance (SPR) experiment is to understand angular momentum states of surface plasmons (SPs). This wiki article assumes that the reader has general knowledge of | + | The ultimate goal of the Surface Plasmon Resonance (SPR) experiment is to understand angular momentum states of surface plasmons (SPs). This wiki article assumes that the reader has general knowledge of photonics and electrodynamics |
+ | |||
=== Surface Plasmon Resonance === | === Surface Plasmon Resonance === | ||
− | A surface plasmon is very similar | + | A surface plasmon is very similar conceptually to a photon confined to a 2-dimensional conductor. The coupling of light to a conductor generates charge density waves that propagate based on the (complex) dielectric constant and thickness of the conductor. These two conditions generally dictate the momentum of a surface plasmon (and therefore the associated wave number, k). |
When coherent light undergoes total internal reflection in at an interface in a dialectric, an [http://en.wikipedia.org/wiki/Evanescent_wave evanescent field] propagating parallel to the component of the incident light in the plane of the dielectric interface is generated. When a conducting film as described above, whose associated plasmon wave number matches the wave number of the evanescent field, a surface plasmon resonance is is generated. In order to tune the resonance, the incident angle of the light can be adjusted, thereby adjusting the wave number of the evanescent field. The wave number of the evanescent field can also be changed by using light of a different wavelength. | When coherent light undergoes total internal reflection in at an interface in a dialectric, an [http://en.wikipedia.org/wiki/Evanescent_wave evanescent field] propagating parallel to the component of the incident light in the plane of the dielectric interface is generated. When a conducting film as described above, whose associated plasmon wave number matches the wave number of the evanescent field, a surface plasmon resonance is is generated. In order to tune the resonance, the incident angle of the light can be adjusted, thereby adjusting the wave number of the evanescent field. The wave number of the evanescent field can also be changed by using light of a different wavelength. | ||
− | In practice, an approximately 43nm thick gold film applied to the back of a glass prism makes for an excellent plasmon setup. | + | In practice, an approximately 43nm thick gold film or 40nm thick silver film applied to the back of a glass prism of index n=1.5 makes for an excellent plasmon setup. While silver is more conductive than gold, thereby allowing for a deeper resonance, its corrosion in atmosphere makes it less practical. |
When a surface plasmon encounters a defect such as a bump or a hole in the conducting surface along which it is propagating, the defect acts as a scatterer for the SP (as it is locally off-resonance for that wavelength of SP) and the SP either deflects off the defect or is re-radiated from the surface, converting back to a photon. In order to conserve linear momentum, a re-radiated SP leaves the dielectric film at the angle of incidence matching its momentum in the plane of propagation. In other words, if a plasmon generated by light of a given wavelength whose resonant angle is θ is ejected from the conductive surface, it will be ejected at the same wavelength as the generated light at the angle θ. | When a surface plasmon encounters a defect such as a bump or a hole in the conducting surface along which it is propagating, the defect acts as a scatterer for the SP (as it is locally off-resonance for that wavelength of SP) and the SP either deflects off the defect or is re-radiated from the surface, converting back to a photon. In order to conserve linear momentum, a re-radiated SP leaves the dielectric film at the angle of incidence matching its momentum in the plane of propagation. In other words, if a plasmon generated by light of a given wavelength whose resonant angle is θ is ejected from the conductive surface, it will be ejected at the same wavelength as the generated light at the angle θ. | ||
− | Since any azimuthal angle in the plane of the conductor can satisfy the above | + | Since any azimuthal angle in the plane of the conductor can satisfy the above constraint on the exit of a re-radiated plasmon, a hollow cone of radiation is observed when a surface plasmon resonance is generated in a film with defects sufficiently large to scatter and eject SPs. |
− | + | A great deal of information can be inferred by measurements of this radiation cone. Because it is a cone whose vertex is at the dielectric/conductor interface, it is convenient to use a prism with cylindrical or spherical symmetry in the axis normal to the dielectric/conductor interface. | |
=== Angular Momentum === | === Angular Momentum === | ||
− | [[File:Helix oam.png|250|thumb|right|Diagram of wavefront helicity and associated topological charge]]Light can carry both orbital and spin angular momentum. Orbital angular momentum (OAM) of light is a consequence of its spacial distribution, such as helicity, while spin angular momentum (SAM) corresponds to circular polarization states. OAM states are quantized by topological charge | + | [[File:Helix oam.png|250|thumb|right|Diagram of wavefront helicity and associated topological charge]]Light can carry both orbital and spin angular momentum. Orbital angular momentum (OAM) of light is a consequence of its spacial distribution, such as helicity, while spin angular momentum (SAM) corresponds to circular polarization states. OAM states are quantized by topological charge m which carriers any integer value, while SAM states are quantized by 1, 0, or -1 as photons are bosons. |
+ | |||
+ | |||
+ | == Techniques == | ||
+ | This section contains information pertaining to the generation of optical OAM and the detection therein. | ||
+ | |||
+ | |||
+ | === Generation of Optical OAM === | ||
+ | |||
+ | The most intuitive method for generating optical OAM is by use of a spiral phase plate. Such a phase plate retards the input wave by an amount depending on the azimuthal angle with respect to the optical axis (pictured below) giving rise to a helical wavefront characteristic of an LG<math>LG_0,m</math> beam, where m represents the topological charge. The shelf distance d of a phase plate made of a material with refractive index n must equal <math>d=m \lambda/n</math>. | ||
+ | |||
+ | === Detection of Optical OAM === | ||
+ | Detecting OAM in the form | ||
Revision as of 17:11, 12 June 2014
Contents
Background and Goal
The ultimate goal of the Surface Plasmon Resonance (SPR) experiment is to understand angular momentum states of surface plasmons (SPs). This wiki article assumes that the reader has general knowledge of photonics and electrodynamics
Surface Plasmon Resonance
A surface plasmon is very similar conceptually to a photon confined to a 2-dimensional conductor. The coupling of light to a conductor generates charge density waves that propagate based on the (complex) dielectric constant and thickness of the conductor. These two conditions generally dictate the momentum of a surface plasmon (and therefore the associated wave number, k).
When coherent light undergoes total internal reflection in at an interface in a dialectric, an evanescent field propagating parallel to the component of the incident light in the plane of the dielectric interface is generated. When a conducting film as described above, whose associated plasmon wave number matches the wave number of the evanescent field, a surface plasmon resonance is is generated. In order to tune the resonance, the incident angle of the light can be adjusted, thereby adjusting the wave number of the evanescent field. The wave number of the evanescent field can also be changed by using light of a different wavelength.
In practice, an approximately 43nm thick gold film or 40nm thick silver film applied to the back of a glass prism of index n=1.5 makes for an excellent plasmon setup. While silver is more conductive than gold, thereby allowing for a deeper resonance, its corrosion in atmosphere makes it less practical.
When a surface plasmon encounters a defect such as a bump or a hole in the conducting surface along which it is propagating, the defect acts as a scatterer for the SP (as it is locally off-resonance for that wavelength of SP) and the SP either deflects off the defect or is re-radiated from the surface, converting back to a photon. In order to conserve linear momentum, a re-radiated SP leaves the dielectric film at the angle of incidence matching its momentum in the plane of propagation. In other words, if a plasmon generated by light of a given wavelength whose resonant angle is θ is ejected from the conductive surface, it will be ejected at the same wavelength as the generated light at the angle θ.
Since any azimuthal angle in the plane of the conductor can satisfy the above constraint on the exit of a re-radiated plasmon, a hollow cone of radiation is observed when a surface plasmon resonance is generated in a film with defects sufficiently large to scatter and eject SPs.
A great deal of information can be inferred by measurements of this radiation cone. Because it is a cone whose vertex is at the dielectric/conductor interface, it is convenient to use a prism with cylindrical or spherical symmetry in the axis normal to the dielectric/conductor interface.
Angular Momentum
Light can carry both orbital and spin angular momentum. Orbital angular momentum (OAM) of light is a consequence of its spacial distribution, such as helicity, while spin angular momentum (SAM) corresponds to circular polarization states. OAM states are quantized by topological charge m which carriers any integer value, while SAM states are quantized by 1, 0, or -1 as photons are bosons.
Techniques
This section contains information pertaining to the generation of optical OAM and the detection therein.
Generation of Optical OAM
The most intuitive method for generating optical OAM is by use of a spiral phase plate. Such a phase plate retards the input wave by an amount depending on the azimuthal angle with respect to the optical axis (pictured below) giving rise to a helical wavefront characteristic of an LG beam, where m represents the topological charge. The shelf distance d of a phase plate made of a material with refractive index n must equal .
Detection of Optical OAM
Detecting OAM in the form
Angular Momentum Conservation in the Generation of Surface Plasmons
This experiment seeks to understand the conversion of light carrying angular momentum into surface plasmons. That is, when an SPR is generated by light with angular momentum, the angular momentum must be conserved one way or another. It could be that surface plasmon resonance supports modes with angular momentum, or that the angular momentum is simply converted to torque at some point in the conversion of light to SPs.
Currently, this project consists of a laser system designed to generate OAM light with linear polarization and topological charge ±1, and a nearly hemispherical prism with a fairly smooth silver film in which to generate an SPR. No detection of angular momentum of plasmons has been attempted yet, but possible methods for detection are outlined below:
- Assume that colinear and spatially identical OAM/non-OAM light can be generated. Then observation of angular momentum in radiation from an SPR generated by OAM light, and subsequent observation of no angular momentum in radiation from an SPR generated by non-OAM light is a likely indicator that angular momentum is conserved in the electromagnetic fields through the plasmon conversion processes. This may not be conclusive, but may be rigorous.
- It is plausible that milling defects into the conductive film that break circular symmetry, such as skewed "escape arms," could provide insight into the local optical field.