Difference between revisions of "Nuclear Magnetic Resonance"
Line 10: | Line 10: | ||
So, <math>\gamma_{_P}=42.577\; 478\; 92(29)\text{MHz/T}</math><br> | So, <math>\gamma_{_P}=42.577\; 478\; 92(29)\text{MHz/T}</math><br> | ||
− | Our magnet will produce fields up to ~ 0.7T. This allows for transverse field frequencies up to ~ 30MHz. We employ a bridged- | + | Our magnet will produce fields up to ~ 0.7T. This allows for transverse field frequencies up to ~ 30MHz. We employ a bridged-tee detector (Waring - 1952) to observe the NMR signal. |
---- | ---- | ||
===Basic Theory=== | ===Basic Theory=== |
Revision as of 17:47, 7 February 2019
Nuclear Magnetic Resonance Project
The magnetic moment of a nucleon is sometimes expressed in terms of its g-factor (a dimensionless scalar) as , where is an intrinsic magnetic moment, is the nuclear magneton and is given by , is the nucleon's g-factor, is the nucleon's spin angular momentum number and is the nucleon's mass. The Hydrogen/Proton Gyromagnetic Ratio, , is equal to .
The proton's g-factor
So,
Our magnet will produce fields up to ~ 0.7T. This allows for transverse field frequencies up to ~ 30MHz. We employ a bridged-tee detector (Waring - 1952) to observe the NMR signal.
Basic Theory
(for more detailed explanations see Nuclear Magnetic Resonance - Andrew)
- Spin-Lattice Relaxation Time
- Conditions for Observation of NMR Absorption
Links and Info: