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Background 

[http://pubs.rsc.org/en/content/articlehtml/2008/cs/b512471a] 

• Ray Optics Explanation 
• Conservation of 
momentum due to 
refraction 
• Appropriate for larger 
beads 

• Polarization Explanation 
• Bead is polarized from the 
laser’s electric field and acts 
like a dipole 
• Appropriate for smaller 
beads 

• Optical traps can be 
modeled as Hookean springs 



Overall Goals of the Project 

• Build and align optical tweezers 

 

• Charaterize trap strength 

 

• Fabricate micro-objects 

 

• Characterize transient heat flow in micro-
objects dependent on object topology 
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Laser Characterization 
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Laser Power vs. Driving Current at λ=637 nm 
 

y = 0.3913x - 24.435 
R² = 0.9991 



Brownian Motion Measurements 

• Equipartition Theorem: 
 
 

 
Where  kB is the Boltzman constant, T  is 
temperature in Kelvin, k is the 
characteristic spring constant,  and        is 
the average variance where variance = 
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Brownian Motion Measurements 
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Transition to IR 

• Availability of 980 nm and 1550 nm lasers 

• Absorption and transmission characteristics of 
Thorlabs FGB67 colored glass 



Laser Characterization 

y = 0.6119x - 12.33 
R² = 0.999 
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Driving Current vs. Laser Power at λ=980 nm 



Brownian Motion Measurements 
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Stoke’s Drag Force Measurement 

vrFd 6

where r is the radius of the object, µ is the fluid viscosity,  
and v is the object velocity 
  

• Assuming: Spherical objects, homogeneous liquid, 
laminar flow, and no particle interference 
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• Determining object velocity from sinusoidally driven translation 
stage 



Stoke’s Drag Force Measurement 

y = 0.1466x - 0.2178 
R² = 0.9993 
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Laser Characterization 

y = 0.0403x - 1.1956 
R² = 0.9981 
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Laser Power vs. Driving Current at λ = 1550 nm 



Unexpected Obstacles 

• At best, objective lens 
will have 28% 
transmission at 1550 nm 

 

 

• Beam expanding lenses 
refract 1550 nm light and 
980 nm light differently 

 

[http://www.thorlabs.us/thorproduct.cfm?partnu
mber=RMS100X-PFO] 



Objective Lens Characterization 

y = 0.0055x + 0.0054 
R² = 0.9947 
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Success 

• Thorlabs FGB67 
colored glass 
damaged by  

    ~ 850 mW of 
unfocused 1550 
nm light 



Steps for Future Groups 

• Acquire usable objective lens 

 

• Integrate a 1550 nm laser with a WDM 

 

• Fabricate micro-objects 

 

• Study heat flow of micro-objects 

 


