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A high power double-clad Er-Yb doped fiber laser is constructed and 

characterized. The fiber is cladding pumped by a 10 W 975 nm laser diode, and later by 

a 10 W 915 nm laser diode. The fiber laser generates up to 1.38 W of continuous wave 

output power at 1550 nm, tunable up to 1560 nm, with a linewidth near 0.1 nm and a 

slope efficiency of 15%. The fundamentals of laser physics and fiber optics are 

discussed, as well as the theory behind single-mode, multimode, double-clad, and Er-

Yb co-doped fiber.   
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Introduction 

High power lasers in the 1550 nanometer wavelength range have attracted 

considerable interest in recent years due to their potential applications in 

communications, range finding, and medical surgery. Fiber lasers in particular have 

received interest because of their efficiency, cost, and reliability. However, for years 

fiber lasers have been limited to either high beam quality single-mode fibers or high 

power multimode fibers. But the recent development of cladding pumped double-clad 

fibers has allowed the construction of high power single-mode fiber lasers, which offer 

the unique combination of high power, high efficiency, high beam quality, and high 

reliability. 

This work aims to explain the fundamental theories behind laser physics and 

fiber optics so that they may be understood by anyone. The intricacies of double-clad 

fiber and the interactions between erbium and ytterbium are explored so that the design 

and construction process of the fiber laser may be better understood. Finally, 

experimental data on a high power single-mode fiber laser is presented. 

What is a Laser? 

The term laser was first coined by physicist Gordon Gould in 1957, as an 

acronym for light amplification by stimulated emission of radiation. Although the 

original meaning denotes a principle of operation, the term is now widely used to 

describe any device that generates light under this principle. While light usually refers 

only to the visible region of the electromagnetic spectrum, the light produced by a laser 

can refer to infrared light, visible light, ultraviolet light, x-rays, or even gamma rays. 
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Similar devices that generate microwaves or radio waves are called masers, derived 

from the acronym for microwave amplification by stimulated emission of radiation. 

While there are many different types of lasers with a wide range of frequencies, they all 

function under the principle of stimulated emission, first theorized by Albert Einstein in 

1917 [1]. 

In the classical view of physics, the energy of an electron orbiting an atomic 

nucleus is greater for orbits further from the nucleus of an atom. However, quantum 

mechanical effects force electrons to take on discrete positions in orbitals, with specific 

energy levels. When a photon excites an electron, the electron absorbs the energy from 

the photon and transitions from its initial ground state to a higher energy excited state. 

The energy difference between these orbitals is identical to the energy of the photon, 

which is proportional to its frequency. The electron will not remain in the excited state 

forever, and after some time, the electron will spontaneously decay back into a lower 

energy level, releasing energy in the form of a photon, emitted in a random direction 

with a random phase. When such an electron decays without external influence, the 

process is called spontaneous emission. However, it is also possible for the photon 

emission to be stimulated by an incoming photon. If an incident photon with suitable 

energy interacts with an electron in an excited state, the electron will immediately 

transition to a lower energy level by emitting a photon in the same direction as the 

incident photon, with the same energy, wavelength, phase, and polarization [2]. This 

process is called stimulated emission, and unlike absorption, during which the incident 

photon is destroyed, a second photon is produced and the incoming light is amplified by 

the stimulated emission of radiation (Fig. 1). 
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Fig. 1: Stimulated Emission 

(a) Before emission, the electron is in the excited state. (b) During emission, the 

incident photon causes the electron to transition to the ground state by emitting a 

photon.  (c) After emission, the emitted photon propagates in the same direction with 

the same frequency and phase as the incident photon, amplifying the light. 

Laser Construction 

A laser is constructed from three principal parts: an energy source, a gain 

medium, and a laser cavity. Each part fulfills an important requirement for stimulated 

emission. The energy source, often referred to as the energy pump or pump source, 

provides the energy to the laser system by exciting the atoms in the gain medium into an 

excited state. Laser amplification requires that the pump source must be powerful 

enough to create a population inversion of the gain medium, meaning there must be a 

greater number of atoms in the excited state of the gain medium than in the ground 

state. Common examples of energy sources include electrical currents, flashlamps, and 

even the light from another laser.  

The gain medium is the source of optical gain in the laser. The atoms within the 

gain medium are excited by the pump source, and caused to emit photons both by 

stimulated and spontaneous emission. The energy levels of the gain medium determine 
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the wavelength of the laser, and the type of gain medium determines the type of pump 

source. There are thousands of different types of gain media, in the form of solids, 

liquids, and gases.  

The laser cavity provides the final component necessary for lasing: feedback. 

The laser cavity provides the incident light to the excited atoms in the gain medium 

allowing stimulated emission. The laser cavity also commonly serves as the output 

coupler, allowing some percentage of the light to leave the system while returning the 

remainder as feedback. A laser cavity can simply be a pair of parallel, partially 

reflective mirrors surrounding a gain medium. While some of the light reflects off the 

mirror providing the gain medium with feedback, the other portion transmits through 

the mirror as the output of the laser.  

A laser functions by first supplying the gain medium with energy. The pump 

source excites an atom in the gain medium to spontaneously emit an initial photon. The 

laser cavity then returns this photon as feedback to the gain medium where it interacts 

with another atom excited by the pump source, causing stimulated emission. The 

emitted photon propagates in the same direction and with the same phase and 

wavelength as the original photon. The process continues, creating a chain reaction as 

the light amplifies, increasing the power of the laser. The output coupler transmits some 

of the light out as the output of the laser, and provides the rest of the light as feedback to 

the gain medium where it causes further stimulated emission. The output power of the 

laser will continue to rise until it reaches a point where either the pump source cannot 

provide any additional energy, or the gain medium cannot be excited any further. At this 
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point, usually after only a few milliseconds, the output power will level off and remain 

constant, producing a continuous wave (CW) laser. 

Optical Fiber 

In a vacuum like outer space, light travels at about 300,000 kilometers (186,000 

miles) per second. But light travels at different speeds in different materials. The 

refractive index of a material denotes the speed light can travel through it, the faster 

light can travel, the lower the refractive index. A vacuum therefore has the lowest 

refractive index of 1, while air has a refractive index of 1.0003 and water has a 

refractive index of 1.33. When light passes between two materials with different 

refractive indices, the light will refract, or bend. This is why a straight object placed 

partially in water will appear to bend at the water’s surface. When light travels from a 

higher refractive index material to a lower refractive index material at a steep angle, 

rather than refracting, all of the light will be reflected. This effect is called total internal 

reflection, and it is what allows optical fibers to function. 

Optical fiber is a flexible, transparent fiber made of glass or plastic which acts 

like a light pipe, transmitting light between the two ends of the fiber. Optical fiber has a 

central core which is embedded in a cladding of slightly lower refractive index. Thus, 

light traveling down the core will reflect off the core-cladding boundary and be guided 

through the core without refracting into the cladding (Fig. 2). 
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Fig. 2: Optical Fiber 

Light traveling through the core of the fiber is totally internally reflected by the 

boundary of the cladding, guiding the light down the length of the fiber. 

Single-Mode and Multimode Fiber 

When light propagates through the core of an optical fiber, it can only do so in a 

discrete set of transverse modes. Each of these modes corresponds to a specific angle at 

which the light travels down the length of the fiber. These modes are independent of 

wavelength, so light of different wavelengths can propagate in the same mode. The 

number of transverse modes allowed in the core is however dependent on the type of 

optical fiber.  

Optical fiber comes in two common types: multimode and single-mode. 

Multimode fiber has a large core that supports multiple modes, while single-mode fiber 

has a small core which can only support a single propagation mode. The core of a 

typical single-mode fiber has a diameter of only 6 μm (micrometers), which prohibits 

higher-order modes from entering the core, and only supports the fundamental mode 

which propagates directly down the fiber. A typical multimode core has a diameter of 

50 μm which supports the fundamental mode and multiple higher-order modes (Fig. 3).  
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Fig. 3: Single-Mode and Multimode Fibers 

The single-mode core only allows the fundamental mode to propagate directly down the 

length of the fiber, while the larger multimode core allows several modes to propagate 

down the fiber at different angles. Both fibers are drawn to scale. 

Single-mode and multimode fibers both have their own advantages and 

disadvantages. A fiber laser constructed with single-mode fiber can produce very high 

output beam quality, but this requires a single-mode pump laser, which is much more 

expensive and less powerful than a multimode source. Using multimode fiber would 

allow for multimode pumping, but multimode fibers generally lead to poor beam quality 

and have higher propagation losses through the core. Single-mode fiber sacrifices power 

for beam quality, and multimode fiber sacrifices beam quality for power. Neither allow 

for a high power fiber laser with high beam quality. However, this dilemma was 

resolved with the advent of double-clad fiber. 
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Double-Clad Fiber 

As the name implies, double-clad fiber has two claddings. Like all optical fibers, 

the core is surrounded by a cladding of lower refractive index in order to guide light by 

total internal reflection. But unlike other fibers, this cladding is then surrounded by an 

outer cladding with an even lower refractive index in order to guide light within the 

inner cladding (Fig. 4). 

 

Fig. 4: Double-Clad Fiber 

Drawn to scale cross sections of single-mode, multimode, and double-clad fiber.  

The addition of an outer cladding allows the laser light to propagate within the single-

mode core, while the pump light propagates within the inner cladding. Because the 

inner cladding has a significantly larger area than the core, it acts almost as a multimode 

core, supporting multiple propagation modes. This allows the inner cladding to be 

pumped with multimode light, which then stimulates the gain medium contained within 

the single-mode core. The result is the best of both single-mode and multimode fibers: 

double-clad fiber offers the high beam quality and low propagation loss of a single-

mode signal laser, but allows the more powerful and less expensive pumping of a 

multimode laser.  
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Erbium-Ytterbium Co-Doped Fiber 

In order to utilize optical fiber as a gain medium, the core of the fiber is doped 

with rare earth elements like erbium, ytterbium, neodymium, or thulium. The active 

fiber is then optically pumped by a laser which excites the dopant material. Erbium-

doped fibers have become especially important, as the most common optical amplifier 

used in fiber optic communications. When Er
3+

 ions are optically pumped at around 975 

nm, they radiate light with a wavelength near 1550 nm, which attenuates least in typical 

silica fibers (Fig. 5) [3]. 

 

Fig. 5: Attenuation in Silica Fibers 

Attenuation in silica fibers is strongly dependent on wavelength. Silica has a strong 

absorption band in the mid-infrared region due to molecular vibrations. Rayleigh 

scattering, caused by random inconsistencies in the glass, causes shorter wavelengths to 

scatter more than longer wavelengths. Impurities, caused by water vapor dissolved in 

the glass, cause an OH absorption band. The result is a local minimum at 1.3μm and an 

absolute minimum at 1.55 μm [3]. 

While erbium emits the desired wavelength, it only allows for efficient lasing in single-

mode systems. For cladding pumped double-clad systems, the absorption of erbium is 
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impractically low [4,5]. However, by co-doping the fiber with erbium and ytterbium, 

absorption can be increased significantly.  

The core of the double-clad fiber is co-doped with Er
3+

 and Yb
3+

, with a much 

greater concentration of ytterbium in order to improve pump absorption [6]. Ytterbium 

has only one excited state within reach from the ground state with near-infrared light, 

and both states have wide bands, allowing ytterbium to efficiently absorb light from a 

wide range of 800 nm to 1100 nm [7] (Fig. 6). 

 

Fig. 6: Erbium-Ytterbium Energy Levels 

The energy levels of erbium-ytterbium co-doped fiber. Co-doping the core with 

ytterbium not only increases efficiency, but also allows efficient pumping with 915 nm 

light as well. 

Pumping the Er-Yb doped fiber (EYDF) with 915 nm or 975 nm light predominately 

excites the ytterbium in the core into the 
2
F5/2 excited state. From there, the ytterbium 

non-radiatively transfers energy to the erbium ions through the dipole-dipole resonant 

interaction between closely located ions [8]. This energy transfer puts the erbium into 

the same 
4
I11/2 excited state as if it were pumped with 975 nm light. The erbium then 

decays to the lower 
4
I13/2 excited state through a non-radiative multi-phonon transition, 
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decaying by emitting vibrational energy. From this state, the erbium will at first 

spontaneously decay to the 
4
I15/2 ground state, emitting a 1550 nm photon. But as the 

laser cavity provides feedback, incident photons will cause the erbium in the 
4
I13/2 level 

to decay by stimulated emission, creating a 1550 nm laser. 

Pump Laser 

To excite the EYDF, the double-clad fiber is cladding pumped by a laser diode. 

A laser diode is an electrically pumped semiconductor laser in which the gain is 

generated by an electric current flowing through a semiconductor diode junction similar 

to those found in light emitting diodes. Laser diodes are one of the most efficient and 

dependable laser types, and are the most common type of laser produced.  

The multimode pump laser diode operates at 975 nm with a maximum output of 

10 W. The laser diode has a conversion efficiency of 45%, so when it is driven at full 

power with 12 A and 1.9 V, 55% of the input electrical power, 12.54 W, is given off as 

waste heat. A laser diode can easily be damaged by heat, so it is cooled by a 

thermoelectric cooler (TEC). When a voltage is applied across a TEC, a temperature 

difference will build up between the two sides, cooling one side and heating the other. 

The laser diode is then mounted on the cool side along with a thermistor, a resistor with 

variable resistance depending on the temperature. This allows a temperature controller 

to monitor the temperature and vary the current to keep the temperature constant, 

protecting the laser diode. 
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Controlling the Pump Laser Diode 

The laser diode is powered by a laser diode driver, which produces up to 15 A 

when supplied with a 0-10 V control signal. To generate the signal, I decided to create a 

graphical user interface (GUI) that would allow the laser diode output power to be set 

by a computer. I chose to use the Python programming language because of its simple 

syntax, accessibility, and its multitude of available modules. Using the module PySerial 

allows Python to easily communicate with an Arduino Duemilanove, a microcontroller, 

which outputs the control signal for the laser diode driver. 

In order to drive the laser diode with its maximum rated current of 12 A, the 

laser diode driver needs a control signal of 8 V. However, the Duemilanove only has 

digital outputs, which can be set to 0 or 5 V. Therefore, I designed a circuit with an 8-

bit digital-to-analog converter (DAC) to set the output voltage (Fig. 7). 

 

Fig. 7: Arduino Control Circuit Diagram 

The control circuit which enables the Arduino to control and monitor the laser diode 

driver. The DAC, along with the accompanying op-amp and inverting amplifier, allows 

the Arduino’s digital outputs to set the analog control signal. The other inverting 

amplifiers allow the Arduino to monitor the laser diode driver’s current. 
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Dependent on which digital inputs are set to high, the DAC will output a current 

corresponding to 256 different possible voltages varying from zero to the reference 

voltage, which is set to 8 V using a 15 V power supply and a simple voltage divider. 

The DAC’s output currents are easily converted to the correct voltage using an op-amp 

with negative feedback from the DAC’s internal feedback resistor and an inverting 

amplifier with -1 gain.  

As well as setting the output current, the laser diode driver also outputs a 0-2 V 

voltage monitor signal and a 0-10 V current monitor signal. The Arduino simply 

measures the voltage monitor signal using a built in analog-to-digital converter (ADC), 

however the Arduino can only measure voltages up to 5 V. Because of the input 

impedance of the Arduino, a simple resistive voltage divider could not be used to 

reduce the current monitor voltage. Instead, two non-inverting amplifiers were used: 

one with –1/2 gain, and the other with -1 gain. The Arduino, control circuit, and the 

diode driver were then all built into a box along with the power supply, cooling fan, 

interlock switch, and a USB-B port to connect to a computer. 

With the control circuit, the Arduino can now control and monitor the laser 

diode driver. The Python GUI creates a window allowing the laser diode to be 

controlled completely from the computer, as well as monitoring the current and voltage 

set by the diode driver (Fig. 8).  
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Fig. 8: Python GUI 

The graphical user interface which controls and monitors the laser diode. The GUI also 

enables the laser diode and monitors whether the interlock switch is turned on or off. 

The Python GUI can either set the current directly, or select the output power using a 

linear fit based on the measured output of the laser. The Python code then 

communicates with the Arduino, which interprets the commands, and sets the output 

accordingly. To protect the laser diode, the Arduino slowly ramps up the current to 

avoid any voltage or current spikes. To protect those operating the laser, the laser diode 

driver will only supply a current when it has been enabled from the GUI, and the 

interlock switch on the box has been turned on. The Python and Arduino codes used can 

be found in Appendices A and B, respectively.    
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Optical Fiber Connections 

In order to transmit light from one optical fiber into another, the optical fiber 

ends must be connected so that light may pass from one core to another without 

significant loss. This can be done with either optical fiber connectors or fusion splices, 

each having their own advantages and disadvantages. Fusion splicing joins the two fiber 

ends using heat, creating one continuous fiber. Fusion splices provide the best 

connections with the lowest amount of loss, but splices are permanent and connections 

cannot be changed without breaking the fiber. The non-permanent method of 

connecting fibers is using optical fiber connectors. Using ferrule connectors (FC) allows 

for optical components to easily be switch or removed, but causes much more loss. 

Ferrule connectors come in two variants: physical contact (PC) and angled physical 

contact (APC). In either case, the fiber is stripped of its coating, embedded in the 

ceramic ferrule, and epoxied into place. The fiber end is then polished to produce a 

rounded surface using lapping film, an ultrafine abrasive material which functions like 

sandpaper. While flat FC/PC connectors typically have lower insertion loss, FC/APC 

connectors severely reduce back-reflections, as any light which reflects off the angled 

polished end leaks into the cladding of the fiber. Two connectors are then attached 

using a mating sleeve which aligns the cores, holds the connectors in place, and 

properly aligns the angled ends of FC/APC connectors. While fusion splices provide 

less loss, I elected to use FC/APC connectors wherever possible so that parts may be 

reused in the future. 
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Experimental Setup 

The experimental setup consists of a 1.5 m long Er-Yb doped fiber pumped by a 

10 W 975 nm multimode laser diode (Fig. 9).  

 

Fig. 9: Experimental Setup  

Double-clad Er-Yb doped fiber laser pumped by a 975 nm laser diode. 

The pump laser is launched into the double-clad fiber by a wavelength division 

multiplexer (WDM), which combines 1550 nm light into the core and 975 nm light into 

the inner cladding. The launch efficiency was measured to be 97% at the double-clad 

output of the WDM. The pump 975 nm light excites the EYDF, which spontaneously 

emits 1550 nm light in the single-mode core. The 1550 nm light is guided through the 

single-mode core to the output coupler, while the excess 975 nm light is dumped out of 
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the cladding and absorbed as heat by the fusion splice. The output coupler extracts 90% 

of the 1550 nm signal light as the output of the laser, while 10% remains in the ring 

laser as feedback. The optical isolator ensures that only 1550 nm light propagating in 

the clockwise direction will be amplified, reducing mode competition within the laser. 

The WDM then combines the 1550 nm light back into the core of the double-clad fiber 

where it will be amplified by stimulated emission. 

The double-clad fiber used in the experimental setup does not actually have two 

glass claddings. Instead, the fiber is identical to a single-mode fiber, except for the 

coating, which is a low index polymer that acts as the outer cladding. This saves a 

considerable amount of money during the fabrication process, allowing the 

manufacturer to use the same fabrication process as single-mode fiber. As well, the 

fiber acts identically to a standard double-clad fiber. However, when the fiber is 

connectorized, the stripped fiber is embedded in high refractive index epoxy. Rather 

than reflecting, the pump light in the cladding is then transmitted into the epoxy, where 

the high power light melts the epoxy, breaking the fiber at the connector. To avoid this, 

the EYDF was fusion spliced to the double-clad pigtail of the WDM and to the single-

mode input of the output coupler. To protect the splices, they were covered with the 

hollow metal tip from a fiber optics epoxy syringe, beneath a standard splice protector. 

The syringe tips prevented the epoxy in the splice protectors from contacting the bare 

fiber, enclosing the inner cladding with air to act as the outer cladding. As well, the 

metal syringe tips acted as a heat sink for any scattered pump light. The pump laser was 

FC-PC connectorized to the multimode pigtail of the WDM simply because it came pre-
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connectorized by the manufacturer. All other fiber connections were made with FC-

APC connectors. 

Experimental Results 

Fig. 10 shows the measured 1550 nm output power versus the launched 975 nm 

pump power. 

 

Fig. 10: 1550 nm Output Power vs. Launched 975 nm Pump Power up to 10 W 

Evolution of the output power as a function of pump power, for 1.5 m of EYDF 

pumped with 975 nm light. 

The laser has a threshold pump power of 0.31 W, with an output of 2.853 mW. The 

maximum achieved output power was 1.055 W with 7.055 W of pump power. 

Interestingly, increasing the pump power above 7.055 W actually resulted in a loss of 

output power, with an output of only 0.743 W with 10.448 W of pump power. I 

originally theorized that the laser was reaching saturation near 7 W, and some loss 

mechanism was contributing to the loss of power. 

 In an optically pumped laser, only the absorbed pump light excites the gain 

medium. Increasing the pump power will increase the amount of ions in the excited 
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state, from where they can emit and amplify light. However, it will also decrease the 

amount of ions in the ground state, from where they absorb the pump light. As the pump 

power increases, the output power of the laser will increase, but the gain will decrease, 

as there are less ions available to absorb light. At some point, the laser will reach 

saturation and there will be no more available ions in the ground state to absorb the 

pump light. Pumping the gain medium with additional power will result in no additional 

output power. When a gain medium approaches saturation, the gain will slowly 

decrease with additional pump power, until it completely saturates and reaches zero. 

However, as we can see in Fig. 10, the gain sharply increases near 4 W of pump power, 

then decreases sharply near 6 W of pump power. This led me to believe the power loss 

may have been due to another cause, such as the modal structure of the diode laser. 

Multimode lasers emit light in a combination of higher-order modes. As the 

power of the laser changes, it is possible for its modal structure to change as well. This 

can create problems with absorption in double-clad fiber, where only the core is actively 

doped, and only the light which overlaps the core of the double-clad fiber can be 

absorbed by the gain medium. If the modal structure of the pump laser devolved to 

produce helical modes at higher powers, the light would only propagate in the cladding 

around the core, severely reducing the output power of the laser.  

To test my hypothesis, I replaced the 1.5 m piece of EYDF with a 3 m length. If 

the reduction in power was due to saturation, extending the gain medium would 

increase the pump power needed for saturation, causing the maximum output to occur at 

a higher pump power. If the reduction in power was due to the degenerative modal 

structure of the pump laser, the peak output would remain near 7 W of pump power. 
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Measuring the output, I observed the maximum 1550 nm light to peak near 7.3 W of 

pump power, supporting the theory that the pump laser’s devolving modal structure 

caused the drop in power. However, before any official measurements were taken, the 

pump laser burned out. 

Low Power Experimental Setup 

Without another 10 W 975 nm laser diode, two 1 W 975 nm laser diodes were 

used to pump the EYDF. The pump lasers were FC-PC connectorized to the multimode 

pigtails of the WDM. Fig. 11 shows the measured 1550 nm output power versus the 

launched 975 nm pump power. 

  

Fig. 11: 1550 nm Output Power vs. Launched 975 nm Pump Power up to 2 W 

Evolution of the output power as a function of pump power, for 3 m of EYDF pumped 

with 975 nm light. 

The maximum output power measured was 297 mW at 2 W of pump power. Unlike the 

previous setup, the output power increased linearly with a slope efficiency of 18%. 

When pumping near threshold, I observed through an IR (infrared) viewer that the light 
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in the fusion splice pulsed. Running the laser into a photodiode, self-pulsing of the laser 

was measured with a frequency near 48 kHz.  

At low pump powers, when the pump is not able to maintain a complete 

population inversion, the gain medium will act as a saturable absorber, due to the 

formation of erbium ion pairs. Co-doping the gain medium with ytterbium reduces ion 

pair formation, but it does not eliminate it [9].  Exciting the erbium ion pairs causes a 

depletion of the ground state. The excited erbium ion pairs must decay back into the 

ground state before they will absorb again, causing the laser to pulse at the relaxation 

frequency of the population inversion. The frequency of the pulsing can be increased by 

raising the pump power, replenishing the population inversion at a faster rate [10]. 

Increasing the pump power above 0.55 W completely suppresses all self-pulsing, 

allowing stable continuous-wave operation of the laser. 
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Refined Experimental Setup 

To improve the laser, several new components were implemented into the fiber 

ring laser, including a new pump laser. The two 1 W 975 nm diodes were replaced with 

a 10 W 915 nm laser diode in the refined setup (Fig. 12). 

 

Fig. 12: Refined Experimental Setup 

Double-clad Er-Yb doped fiber laser pumped by a 915 nm laser diode. 

Just like before, the pump laser is launched into the inner cladding of the double-clad 

fiber by the WDM. The double-clad pigtail of the WDM is fusion spliced to the active 

double-clad fiber without a splice protector. Instead, the splice is left bare to prevent the 

pump light from being absorbed as heat. The fusion splice is then mechanically held by 

a hollow disc to completely surround the bare splice with air. The pump 915 nm light 

then excites the Er-Yb doped core of the double-clad fiber, causing the spontaneous 
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emission of 1550 nm light in the core. The EYDF is then fusion spliced to another 

WDM. This splice too is left unprotected and held isolated in air. The WDM separates 

the 1550 nm light into the core of the single-mode fiber, and dumps the excess 915 nm 

pump light out of the system. The output coupler extracts some percentage of the signal 

light as the output of the laser, while the remaining light remains in the laser as 

feedback. The light travels into the optical circulator, which only allows light to travel 

through its ports in one direction. The light enters port 1 of the circulator and exits out 

of port 2, into the fiber Bragg grating (FBG). A Bragg grating is a selective reflector, 

which reflects particular wavelengths of light and transmits all others. The Bragg 

grating is constructed into the core of a short segment of optical fiber, and serves to 

reduce the bandwidth of the laser by only allowing a small range of wavelengths to be 

amplified. Light outside this range transmits through the Bragg grating and is dumped 

out of the system, while light within the range is reflected back into the optical 

circulator. The circulator transmits the reflected light into the single-mode pigtail of the 

WDM, which combines the light back into the core of the double-clad fiber where it 

will be amplified by stimulated emission. 
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Mode Scrambling 

The efficiency of the fiber laser depends largely on the coupling of the pump 

light from the inner cladding to the Er-Yb doped core. However, in double-clad fibers, 

the pump light can propagate in the so-called doughnut mode, in which light propagate 

in a circular ring, but not in the center. The doughnut mode has a very poor overlap with 

the centered core, resulting in reduced absorption of the pump light. Therefore, for 

efficient absorption of the pump light, the pump modes must be scrambled to increase 

the core overlap. 

To improve the pump absorption, I investigated various mode scrambling 

techniques. Simply winding the EYDF in various shapes with small radius bends 

disturbs the mode structures of the pump, increasing the overlap of the pump modes 

with the core. The Er-Yb doped fiber is fusion spliced to the WDM and then wrapped 

around a series of optics posts to create different mode scrambling geometries. The 

EYDF was then pumped at a low power to excite the gain medium, but prevent a 

population inversion. Absorbed 915 nm light causes the EYDF to spontaneously emit in 

a random direction. The opposite end of the EYDF is cleaved and placed into a power 

meter, which measures the remaining 915 nm light not absorbed by the EYDF. This is 

not a definitive measure of the absorption; even at low power and without feedback 

there will still be some 1550 nm light measured by the power meter. However, the 

measurement should prove a useful relative measurement of various mode scrambling 

geometries. 

Without any mode scrambling, the EYDF absorbed 58% of the 915 nm pump 

light. Bending the EYDF into a circle and a figure eight increased the absorption to 62% 
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and 63%, respectively. A kidney shaped geometry has been shown to maximize 

absorption, by combining fiber sections of different radii and lengths to perform mode 

mixing at the points where the curvature changes [11]. With a kidney shaped mode 

scrambler, the absorption increased to 64%. By varying the dimensions of the kidney 

shaped mode scrambler and observing how the absorption responded, I increased the 

absorption to 71% using the optimized geometry shown in Fig. 13. 

 

Fig. 13: Optimized Mode Scrambling Geometry 

Combining fiber sections with different lengths and radii scrambles the modes at the 

curvature changes, increasing the pump light absorption in the following piece of fiber.  
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Experimental Results 

The output power of the laser was measured for EYDF lengths of 3 m, 4 m, and 

5 m. The output power was optimized using different output couplers for each length. 

Fig. 14 shows the output power of the laser versus the launched pump power for the 

various EYDF lengths. 

 

Fig. 14: 1550 nm Output Power vs. Launched 915 nm Pump Power up to 10 W 

Evolution of the output power as a function of pump power, for 3 m, 4 m, and 5 m of 

EYDF pumped with 915 nm light. 

The maximum measured output power was 1.384 W for the 5 m long EYDF with 98% 

output at 10 W. Extending the length of EYDF improved the slope efficiency of the 

laser from 9.76% for 3 m of EYDF, to 12.74% for 4 m of EYDF, to 15.22% for 5 m of 

EYDF. The greater length of EYDF also increased the output power of the laser 

because the excess unabsorbed pump light was absorbed more by the longer fibers. 

Even with 5 m of EYDF, the upper limit of the theoretical absorption of 915 nm light in 

the inner cladding is only 6.45 W. Even at its peak efficiency, the 915 nm pumped fiber 
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laser is still less efficient than the 975 nm pumped laser due to the absorption of Yb
3+

 

(Fig. 15) [12]. 

  

Fig. 15: Absorption and Emission Spectra of Yb-Doped Fiber 

Yb-doped fiber exhibits a primary absorption peak near 975 nm with a small linewidth, 

and a broad absorption peak near 915 nm. 

The smaller absorption peak near 915 nm for ytterbium limits the amount of absorbed 

pump light, and reduces the slope efficiency of the 915 nm pumped fiber laser. 

Measuring the absorption of the mode scrambled EYDF as I did before, the 5 m of 

EYDF absorbed 71% of the 915 nm pump laser. Pumping the EYDF with the same 

amount of 975 nm pump light, the 5 m of EYDF absorbed 96% of the pump light. 

While the different mode structures of the two pump lasers possibly contributed to the 

difference in absorption, it is evident that the reduced slope efficiency of the 915 nm 

pumped fiber laser is due to the reduced absorption of ytterbium at 915 nm. 

To determine the optimum output coupling ratio for the fiber laser, six fiber 

couplers were used to extract the power from the laser cavity in 11 different output 
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ratios. Fig. 16 shows the output power of the laser versus the output coupling ratio for 

the 3 m, 4 m, and 5 m lengths of EYDF pumped at 10 W. 

 

Fig. 16: 1550 nm Output Power vs. Output Coupling Ratio 

Evolution of the output power as a function of output coupling ratio, for 3 m, 4 m, and 

5 m of EYDF pumped with 10 W of 915 nm light. The small changes in power for the 

higher coupling ratios are likely caused by the inconsistent polish quality of the FC-

APC connectors.   

As is expected in long fiber lasers, higher powers are obtained for the higher output 

coupling ratios. For long fiber lasers, the single-pass gain is great, requiring a high 

output coupling ratio for optimized power. On the other hand, for short fiber lasers, the 

low single-pass gain has to be compensated with high feedback percentages in order to 

function [13]. Output coupling optimization follows similar rules for all lasers. For 

high-gain lasers, the output power can remain fairly constant over a wide range of 

output coupling ratios. While for low-gain lasers, the optimization of the output 

coupling is crucial for operation [14]. As a long fiber laser and a high-gain laser, the 

double-clad fiber laser does not require precise coupling optimization, as the output 

power remains fairly constant from 80% to 99% output coupling. 
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With the addition of the fiber Bragg grating, the linewidth of the output beam 

has been reduced significantly (Fig. 17). 

 

Fig. 17: Output Spectrum 

Output spectrum of the double-clad fiber laser with and without the fiber Bragg grating. 

Without the Bragg grating, the output had a full width at half maximum (FWHM) 

linewidth of 1.3 nm, with a central wavelength at 1544.8 nm. With the fiber Bragg 

grating included in the feedback loop, the output has a central wavelength of 1549.5 

nm, and a linewidth of only 0.63 nm. However, the monochromator used to measure the 

linewidth only has a resolution of about 0.5 nm, so it cannot accurately measure the true 

linewidth of the laser. The FBG itself has a bandwidth of 0.1 nm, so I expect the 

linewidth of the laser to be near 0.1 nm. However, I can only definitively say the 

linewidth is 0.63 nm or less. 

Another advantage of the fiber Bragg grating is that it allows the laser to be 

tuned. The FBG is made of many small cavities, which reflect certain wavelengths 

depending on their size. By stretching the FBG, the size of the cavities is increased, and 

the selected wavelengths which are reflected are increased as well. Stretching the FBG, 
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the central wavelength of the laser was able to be increased and tuned within a range of 

nearly 10 nm, from 1549 nm to 1559 nm. 

Finally, I measured the beam quality factor (M
2
) of the laser. The M

2
 factor is 

the ratio of a beam’s diameter and divergence angle compared to that of an ideal 

Gaussian beam at the same wavelength. For an ideal single-mode Gaussian beam, the 

M
2
 value is exactly one. For multimode beams, the M

2
 value will be much higher. I 

measured the M
2
 factor of the fiber laser to be 1.10, with a beam waist of only 86 μm, 

representing a very good single-mode laser. 

Conclusion 

In summary, I have designed and realized an all-fiber high power single-mode 

fiber laser. Pumping the cladding of the Er-Yb co-doped double-clad fiber, the laser 

delivers up to 1.38 W of continuous wave output at 1550 nm, tunable up to 1560 nm. 

The laser has a linewidth of 0.1 nm, a slope efficiency of 15%, and a beam quality 

factor (M
2
) of 1.10. The diode laser is controlled by computer, using a Python GUI and 

an Arduino constructed for this experimental setup. The laser could be improved in the 

future to deliver higher output powers by replacing the 915 nm pump laser with a 975 

nm laser diode, with the use of additional pump lasers, or by simply extending the 

EYDF. As well, implementing a diffraction grating or Fabry-Perot cavity into the ring 

cavity could further reduced the linewidth of the laser. 
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Appendix A: Python Code 

""" 

Created August 2013 by Colin Diehl 

A program built in Python 3.3.2 to communicate with an Arduino which controls 

an 8-bit Digital-to-Analog Converter (DAC) to power a Laser Diode Driver. 

 

In order for the program to read data from the Arduino and update the GUI, 

the program had to be split into threads. 

 

This was my first time doing serious programming or working with Python, 

so the majority of the threading code comes from a recipe created by 

Jacob Hallen, which I found online at: 

http://code.activestate.com/recipes/82965-threads-tkinter-and-asynchronous-io/ 

 

Comments which end in "-JH" come directly from the threading recipe. 

 

The rest of the code was written by me, over a period of about a month, 

during which I learned to use Python, Tkinter, and PySerial. After a 

lot of trial and error, confusion, and many Google searches, I was finally 

able to create a code which worked. 

 

The Arduino code that goes with this handles ramping up the voltages to protect the 

laser diode. 

 

Also note that the buttons display what they'll do when pressed. So when the button 

says "SEND", the program is actually in the opposite mode of STOP. 

This is also true for the Enable and Pause button. This is why the program will enable 

when "DISABLE" is displayed, and vice versa.  

 

- Colin Diehl 

""" 

 

from tkinter import * #import the necessary modules 

import time 

import threading 

import queue 

import serial as Serial 

 

port = "COM5" #the serial port the Arduino is connected to 

 

def translate(value, leftMin, leftMax, rightMin, rightMax):   

    leftSpan = leftMax - leftMin                             

    rightSpan = rightMax - rightMin                          

    valueScaled = float(value - leftMin) / float(leftSpan)   
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    return int(rightMin + (valueScaled * rightSpan)) 

#a function similar to the Arduino map function 

#translates a value from one range to another  

 

serial = Serial.Serial(port, 9600, timeout=.01) 

#opens a serial port to the Arduino, with a .01 sec timeout 

 

class GuiPart(Frame): 

    """ This is the main GUI class which sets up the GUI layout 

    and defines the functions of the buttons""" 

    def __init__(self, master, queue): 

        Frame.__init__(self,master) 

        self.grid() 

        self.queue = queue  

        self.create_widgets() 

        global default 

        default = self.cget('bg') #defines the default button color 

                                   

    def create_widgets(self): 

        """ This is the function that creates and places everything that 

        appears in the GUI""" 

        Label(self, 

              text = "Choose Entry Mode:" 

              ).grid(row = 0, column = 0) 

        self.choice = StringVar() 

        self.choice.set("Laser Diode Power") 

        #radiobuttons allows the user to set the entry mode to control the DAC 

        Radiobutton(self, 

                    text = "Binary", 

                    variable = self.choice, 

                    value = "Binary", 

                    command = self.update_mode 

                    ).grid(row = 1, column = 0) 

        Radiobutton(self, 

                    text = "Voltage", 

                    variable = self.choice, 

                    value = "Voltage", 

                    command = self.update_mode 

                    ).grid(row = 1, column = 1) 

        Radiobutton(self, 

                    text = "Current", 

                    variable = self.choice, 

                    value = "Current", 

                    command = self.update_mode 

                    ).grid(row = 1, column = 2) 

        Radiobutton(self, 
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                    text = "Laser Diode Power", 

                    variable = self.choice, 

                    value = "Laser Diode Power", 

                    command = self.update_mode 

                    ).grid(row = 1, column = 3) 

 

        #instructions for what value to enter  

        self.mode = Label(self) 

        self.mode["text"] = "    Enter the desired laser diode power between 0 and 10.00 W 

below: " 

        self.mode.grid(row = 2, column = 0, columnspan = 4, sticky = W) 

 

        #entry box for user to type in numbers 

        self.value = Entry(self) 

        self.value.grid(row=3, column=0) 

 

        #label which displays different units depending on selected entry mode 

        #default mode is power, so units is initially Watts 

        self.units = Label(self) 

        self.units["text"] = "W" 

        self.units.grid(row = 3, column = 1, sticky = W) 

 

        #Button to send entered value to Arduino 

        self.send=Button(self, height = 2, width = 12) 

        self.send["text"]= "SEND" 

        self.send["bd"] = 3 

        self.send["command"] = self.go 

        self.send.grid(row = 3, column = 2, rowspan = 2) 

 

        #Button to enable laser diode driver 

        self.enable=Button(self, height = 2, width = 12) 

        self.enable["text"]="ENABLE" 

        self.enable["bd"] = 3 

        self.enable["command"] = self.toggle 

        self.enable.grid(row = 3, column = 3, rowspan = 2) 

 

        #Button to end the program 

        self.end=Button(self, height = 2, width = 12) 

        self.end["text"]= "END" 

        self.end["bd"] = 3 

        self.end["command"] = self.quit 

        self.end.grid(row = 3, column = 5, rowspan = 2) 

 

        #Text box to display error messages 

        self.error = Text(self, width = 17, height = 1) 

        self.error.grid(row = 4, column = 0) 
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        #Labels Arduino input 

        Label(self, 

              text = "Arduino Input: " 

              ).grid(row = 5, column = 1) 

 

        #Arduino input text box 

        self.ard_read = Text(self) 

        self.ard_read.grid(row = 6, column = 0, rowspan = 4, columnspan = 7) 

        self.ard_read["width"] = 98 

 

        #Scrollbar attached to Arduino input text box 

        self.scroll=Scrollbar(self) 

        self.scroll["command"] = self.ard_read.yview 

        self.scroll.grid(row = 6, column = 6, rowspan = 4, columnspan = 1, sticky = 'nsew') 

        self.ard_read["yscrollcommand"] = self.scroll.set 

 

        #Button to pause the Arduino input 

        self.pause = Button(self) 

        self.pause["text"] = "Pause\n " + "Arduino Input" 

        self.pause["command"] = self.ard_pause 

        self.pause["bd"] = 3 

        self.pause.grid(row = 10, column = 0, rowspan = 2) 

 

        #Button to clear the Arduino input 

        self.clear = Button(self) 

        self.clear["text"] = "Clear\n " + "Arduino Input" 

        self.clear["command"] = self.empty 

        self.clear["bd"] = 3 

        self.clear.grid(row = 10, column = 1, rowspan = 2) 

 

        #Interlock on/off label 

        self.interlock = Label(self) 

        self.interlock["text"]="INTERLOCK:    " 

        self.interlock["height"] = 4 

        self.interlock["width"] = 30 

        self.interlock.grid(row = 1, column = 7, rowspan = 3) 

 

    def ard_pause(self): #toggles between pause and update 

        pause_index_dict={"Pause": "Update" , "Update" : "Pause"} 

        pause_index[0] = pause_index_dict[pause_index[0]] 

        if pause_index[0] == "Pause":  

            self.pause["text"] = str(pause_index[0]+'\n') + ' Arduino Input' 

            self.pause["bg"] = default 

            #changes button text and sets button color to default 

        elif pause_index[0] == "Update": 
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            self.pause["text"] = "Arduino Input" + "\n" + "Paused" 

            self.pause["bg"] = "gray" 

            #changes button text and sets button color to gray while paused 

            #actual command that pauses the input is elsewhere 

         

         

    def empty(self): #clears the Arduino input text box 

        self.ard_read.delete(0.0, END) 

 

    def update_mode(self): #updates entry mode, entry instructions, and units 

        entry_mode = self.choice.get() 

        if entry_mode == "Binary": 

            self.mode["text"] = "    Enter an integer between 0 and 255 below:                        

" 

            self.units["text"] = " " 

        elif entry_mode == "Voltage": 

            self.mode["text"] = "    Enter the desired voltage between 0 and 8.00 V below:            

" 

            self.units["text"] = "V" 

        elif entry_mode == "Current": 

            self.mode["text"] = "    Enter the desired current between 0 and 12.00 A below:           

" 

            self.units["text"] = "A" 

        elif entry_mode == "Laser Diode Power": 

            self.mode["text"] = "    Enter the desired laser diode power between 0 and 10.00 

W below: " 

            self.units["text"] = "W" 

          

    def go(self): #sends entered value to Arduino 

        index_dict={"SEND": "STOP" , "STOP" : "SEND"} 

        index[0] = index_dict[index[0]] #toggles between send and stop mode 

        self.send["text"] = str(index[0]) #updates button text depending on current mode 

        if index[0] == "STOP": #when button displays "STOP" value is sent 

            entry_mode = self.choice.get() #retrieve entered value 

            if entry_mode == "Binary": #in binary mode, sends an integer between 0 and 

255 to Arduino 

                try: 

                    message = int(self.value.get()) #checks that entered value is an integer 

                    if message < 0 or message > 255: #checks that entered value is within the 

acceptable range 

                        message = int('f') #if not, creates a value error 

                except ValueError: 

                    message = int(0) #if there's a value error, 0 is sent to the Arduino 

                    self.error.insert(0.0, "Invalid Integer\n") #and the error text box displays 

error message 
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            elif entry_mode == "Voltage": #in voltage mode, entered value is a voltage 

between 0 and 8 V 

                try: 

                    message = float(self.value.get()) #retrieves entered value  

                    if message < 0 or message > 8: #checks that value is within acceptable 

range 

                        message = int('f') #if not, creates a value error  

                    else: #if value is within range 

                        message = int(100*message) #takes integer of value * 100 to round 

value to nearest hundredth  

                        message = translate(message,0,800,0,255) #translates value from 0 to 

800, to binary value 

                except ValueError: 

                    message = int(0) #if there's a value error, 0 is sent 

                    self.error.insert(0.0, "Invalid Voltage\n") #and the error text box displays 

error bar 

            elif entry_mode == "Current": #in current mode, entered value is a current 

between 0 and 12 A 

                try: 

                    message = float(self.value.get()) #follows same path as voltage mode 

                    if message <0 or message >12: 

                        message = int('f') 

                    else:                              #except current is first converted to voltage, 

                        message = int((200/3)*message) #as the laser diode driver input takes 0-

10V, to output 0-15A 

                        message = translate(message,0,800,0,255) 

                except ValueError: 

                    message = int(0) 

                    self.error.insert(0.0, "Invalid Current\n") 

            elif entry_mode == "Laser Diode Power": #in laser diode power mode, entered 

value is a power between 0 and 11 W 

                try: 

                    message = float(self.value.get()) #retrieves value as before 

                    if message > 10 or message < 0: 

                        message = int('f') 

                    elif message == 0: #except if value is 0, it sends 0 

                        message = int(0) #this is here because the power selection mode is based 

on a linear fit 

                    elif message == 10: 

                        message = int(255) 

                    else: 

                        message = float(message + .3742) #converts entered value to voltage, 

and then to a binary value 

                        message = float(23.585*message) #uses equation based on linear fit of 

diode power data collected earlier 

                        message = int(message) 
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                except ValueError: 

                    message = int(0) 

                    self.error.insert(0.0, "Invalid Power\n") #if there's a value error, displays 

error message as before 

            sent = translate(message,0,255,0,800) 

            sent = .01*sent 

            sent = str(sent) 

            if len(sent) == 3: 

                sent+="0" 

            sent = sent[0:4] 

            self.ard_read.insert(0.0, "\t----- " + sent + " V Signal Set -----\n") 

            message = str(message) #finally takes value and converts it into a string 

            if enable_index[0] == "ENABLE": #if the enable button displays "Enable", the 

GUI is set to Disabled 

                message = message + "D" # adds a "D" to the end of the sent value 

                self.enable["bg"] = default #sets background color of enable button to default 

            if enable_index[0] == "DISABLE": #if the GUI is set to Enabled 

                message = message + "E" #adds an "E" to the end of the sent value 

                self.enable["bg"] = 'red' #changes the enable button color to red to signal that 

the laser is on 

            serial.write(bytes(str(message), encoding = "ascii")) #sends the data, converting 

it to bytes using ascii encoding 

             

                                     

        if index[0] == "SEND": #when button displays "SEND" no value is sent 

            message = '0' #value is set to 0 

            message = str(message) 

            if enable_index[0] == "ENABLE": #adds "E" or "D" just as before 

                message = message + "D" 

                self.enable["bg"] = default 

            if enable_index[0] == "DISABLE": 

                message = message + "E" 

            self.value.delete(0, END) #deletes value in entry box 

            serial.write(bytes(str(message), encoding = "ascii")) #sends 0 and "E" or "D" to 

Arduino 

            self.error.delete(0.0, END) #deletes any error message in error box 

            sentmessage = "\t----- 0.00 V Signal Set -----\n" 

            self.ard_read.insert(0.0, sentmessage) 

        time.sleep(.1) 

 

    def toggle(self): #toggles enable mode between enabled and disabled 

        enable_index_dict={"ENABLE": "DISABLE" , "DISABLE" : "ENABLE"} 

        enable_index[0] = enable_index_dict[enable_index[0]] 

        self.enable["text"] = str(enable_index[0]) #updates enable button text 

        #the rest of the function is simply the send command that appears above 

        #so that when enabled or disabled, the value is resent to the Arduino 
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        if index[0] == "STOP": 

            entry_mode = self.choice.get() 

            if entry_mode == "Binary": 

                try: 

                    message = int(self.value.get()) 

                    if message < 0 or message > 255: 

                        message = int('f') 

                except ValueError: 

                    message = int(0) 

                    self.error.insert(0.0, "Invalid Integer\n") 

            elif entry_mode == "Voltage": 

                try: 

                    message = float(self.value.get()) 

                    if message < 0 or message > 8: 

                        message = int('f') 

                    else: 

                        message = int(100*message) 

                        message = translate(message,0,800,0,255) 

                except ValueError: 

                    message = int(0) 

                    self.error.insert(0.0, "Invalid Voltage\n") 

            elif entry_mode == "Current": 

                try: 

                    message = float(self.value.get()) 

                    if message <0 or message >12: 

                        message = int('f') 

                    else: 

                        message = int((200/3)*message) 

                        message = translate(message,0,800,0,255) 

                except ValueError: 

                    message = int(0) 

                    self.error.insert(0.0, "Invalid Current\n") 

            elif entry_mode == "Laser Diode Power": 

                try: 

                    message = float(self.value.get()) 

                    if message > 10 or message < 0: 

                        message = int('f') 

                    elif message == 0: 

                        message = int(0) 

                    elif message == 10: 

                        message = int(255) 

                    else: 

                        message = float(message + .3742) 

                        message = float(23.585*message) 

                        message = int(message) 

                except ValueError: 
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                    message = int(0) 

                    self.error.insert(0.0, "Invalid Power\n") 

            message = str(message) 

            if enable_index[0] == "ENABLE": 

                message = message + "D" 

                self.enable["bg"] = default 

                self.ard_read.insert(0.0, "\t----- Laser Diode DISALED -----\n") 

            if enable_index[0] == "DISABLE": 

                message = message + "E" 

                self.enable["bg"] = 'red' 

                self.ard_read.insert(0.0, "\t----- Laser Diode ENABLED -----\n") 

            serial.write(bytes(str(message), encoding = "ascii")) 

                                     

        if index[0] == "SEND": 

            message = '0' 

            message = str(message) 

            if enable_index[0] == "ENABLE": 

                message = message + "D" 

                self.enable["bg"] = default 

                self.ard_read.insert(0.0, "\t----- Laser Diode DISALED -----\n") 

            if enable_index[0] == "DISABLE": 

                message = message + "E" 

                self.enable["bg"] = "red" 

                self.ard_read.insert(0.0, "\t----- Laser Diode ENABLED -----\n") 

            serial.write(bytes(str(message), encoding = "ascii")) 

            self.error.delete(0.0, END) 

              

    def quit(self): #END button which closes program 

        serial.write(bytes(str('0D'), encoding = "ascii")) #sends 0 and "D" to Arduino to 

shutoff all inputs, in case close doesn't work properly 

        serial.close() #closes serial port 

        root.destroy() #closes GUI 

 

    def processIncoming(self): 

        """ 

        Handle all the messages currently in the queue (if any) -JH. 

        """ 

        while self.queue.qsize(): 

            try: 

                msg = self.queue.get(0) #retrieves value from queue 

                str(msg) 

                if "I" in msg: #if analog switch sends signal to arduino 

                    self.lock = "on"  

                    self.interlock["text"]= " INTERLOCK: ON " #updates interlock label to 

display on 

                    self.interlock["bg"] = "green" #changes interlock label to be green 
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                    msg = str(msg.lstrip("I")) #removes interlock information from the string 

                if "O" in msg: #if analog switch doesn't send signal to arduino 

                    self.lock = "off" 

                    self.interlock["text"] = " INTERLOCK: OFF" #updates interlock label to 

display off 

                    self.interlock["bg"]= "red" #changes interlock label to be red 

                    msg = str(msg.lstrip("O")) #removes interlock information from the string 

                msg = msg.replace("a", "Voltage Monitor = ", 1) #these two lines replace 

characters I used in the Arduino code to separate values 

                msg = msg.replace("q", " V   Current Monitor = ", 1) #and replaces them with 

the text defining the value 

                msg = msg.replace("z", " V   Output Current = ", 1) 

                msg = msg.replace("j", " A\n", 1) 

                if pause_index[0] == 'Pause' and self.lock == "on" and enable_index[0] == 

"DISABLE" and index[0]=="STOP" and '\n' in msg and "Voltage" in msg and "Output" 

in msg:  

                    #Only updates if laser is enabled, interlock is on, a signal was sent, and 

arduino input is in update mode 

                    self.ard_read.insert(0.0,msg) #adds value to Arduino input text box 

                elif pause_index[0] == 'Update': #if it's in pause mode 

                    time.sleep(.001) #read value is not added to input text box, and program 

sleeps for a millisecond 

            except queue.Empty: #if the queue is empty, the program does nothing 

                pass 

 

class ThreadedClient: 

    """ 

    Launch the main part of the GUI and the worker thread. -JH 

    """ 

    def __init__(self, master): 

        """ 

        Start the GUI and the asynchronous threads. We are in the main 

        (original) thread of the application, which will later be used by 

        the GUI. We spawn a new thread for the worker. -JH 

        """ 

        self.master = master 

 

        # Create the queue -JH 

        self.queue = queue.Queue() 

 

        # Set up the GUI part -JH 

        self.gui = GuiPart(master, self.queue) 

 

        # Set up the thread to do asynchronous I/O -JH 

        self.thread1 = threading.Thread(target=self.workerThread1) 

        self.thread1.start() 
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        # Start the periodic call in the GUI to check if the queue contains 

        # anything -JH 

        self.periodicCall() 

 

    def periodicCall(self): 

        """ 

        Check every 100 ms if there is something new in the queue. -JH 

        """ 

        self.gui.processIncoming() 

        self.master.after(100, self.periodicCall) 

 

    def workerThread1(self): 

        """ 

        This is where we handle the asynchronous I/O. -JH 

        """ 

        while 1: #creates infinite while loop 

            time.sleep(.1) #sleeps for a tenth of a second 

            msg = str(serial.readline()) #reads the entire line from the Arduino 

            msg = str(msg.lstrip("b'").rstrip("'")) #strips the "b'" that appears at the start of 

the line, and the "'" that appears at the end 

            if msg == "": #if the message is blank 

                time.sleep(.1) #the program sleeps for a tenth of a second 

            else: #else if the message contains anything 

                self.queue.put(msg) #the message is put into the queue 

 

root = Tk() #initialize tkinter 

index = ["SEND"] #set intial mode to stop, so button displays "SEND" 

enable_index = ["ENABLE"] #set initial mode to disabled 

pause_index = ["Pause"] #set initial mode to update 

root.title("10W Laser Control") #title GUI window 

 

client = ThreadedClient(root) #run the threads 

root.mainloop() #loop the GUI program 
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Appendix B: Arduino Code 

int val=0;  

int csensor = 0; 

float csensorvalue = 0; 

int vsensor = 0; 

float vsensorvalue = 0; 

void setup(){ 

  Serial.begin(9600); //begin Serial communication at 9600 bps 

  pinMode(2,OUTPUT); //set the digital pins used to outputs 

  pinMode(4,OUTPUT); 

  pinMode(5,OUTPUT); 

  pinMode(6,OUTPUT); 

  pinMode(7,OUTPUT); 

  pinMode(8,OUTPUT); 

  pinMode(9,OUTPUT); 

  pinMode(10,OUTPUT); 

  pinMode(11,OUTPUT); 

  pinMode(12,INPUT); 

} 

 

void loop(){ 

  if (Serial.available()){ //if communications are available 

    val = Serial.parseInt(); //read the incoming integer  

    int line = Serial.read(); //read the incoming character 

    if (val > 255 or val < 0){ 

      val = 0;               //check that the value is within the acceptable range 

    } 

       if(line == 'E'){     //if the character is "E" 

        digitalWrite(2,HIGH); //send the enable signal 

      } 

      if(line == 'D'){ //if the character is "D" 

        digitalWrite(2,LOW); //send the disable signal 

      } 

    for(int x=0; x<=val; x++){ //ramps up the voltage  

      digitalWrite(11,x&B1?HIGH:LOW);    //this part assigns a bit to each output pin                

      digitalWrite(10,x&B10?HIGH:LOW);   //if the bit is "1", the ouput is set to HIGH 

      digitalWrite(9,x&B100?HIGH:LOW);   //if the bit is "0", the output is set to LOW 

      digitalWrite(8,x&B1000?HIGH:LOW);  //this  part reads the integer between 

      digitalWrite(7,x&B10000?HIGH:LOW); //0 and 255, and sets the correct DAC 

output 

      digitalWrite(6,x&B100000?HIGH:LOW); 

      digitalWrite(5,x&B1000000?HIGH:LOW); 

      digitalWrite(4,x&B10000000?HIGH:LOW); 

      delay(10); 
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        }                        //after ramping up, the output is set to the read value 

  } 

  csensor = analogRead(A0); //reads the current monitor from the diode driver  

  csensorvalue = map(csensor, 0, 1023, 0, 500); //maps the 10-bit digital value to 0 to 

500 

  float z = csensorvalue * .02; //turns the value into a decimal rounded to the nearest 

hundredth 

  vsensor = analogRead(A2); //reads the voltage monitor from the diode driver 

  vsensorvalue = map(vsensor, 0, 1023, 0, 500); //maps the 10-bit digital value to 0 to 

500 

  float w = vsensorvalue * .01; //rounds the value down to the nearest hundredth 

  int interlock = digitalRead(12); //reads the digital input from the interlock switch 

  if(interlock == HIGH){ //if the input is high 

    Serial.print('I'); //prints "I" to the serial communications 

  } 

  if(interlock == LOW){ //if the input is low 

    Serial.print('O'); //prints "O" to the serial communication 

  } 

  Serial.print('a'); //the character separates the printed values 

  Serial.print(w); //prints the voltage monitor 

  Serial.print('q'); //character separates printed values 

  Serial.print(z); //prints the current monitor 

  Serial.print('z'); //separates printed values 

  Serial.print(1.5*z); //prints output current based on voltage monitor 

  Serial.print('j'); //separates printed values 

  delay(1000); //the program sleeps for 1 second before looping 

} 
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Appendix C: Parts Used 

E-Tek 95/5 Output Coupler (P/N: F701647056) 

Gooch & Housego 2+1x1 Multimode Power Combiner (P/N: TFB-550211B31) 

Gould 50/50 Output Coupler (P/N: 45-13255-50-42430) 

Gould 80/20 Output Coupler (P/N: 22-10355-20-11201) 

JDSU 8.5 W 975 nm Fiber-Coupled Laser Diode (P/N: 63-00340) 

JDSU Fiber Bragg Grating (P/N: FBG-QT09-345-00) 

JDSU Optical Circulator (P/N: CR5500+A-00002) 

Kaifa Tech 99/1 Output Coupler (P/N: WBC-A-35-01-2-LANN) 

Lumina Power Laser Diode Driver (P/N: LDD-100-15-2) 

Newport High Power Laser Diode Mount (P/N: 763H)  

Nufern Er-Yb Co-Doped Double-Clad Fiber (P/N: SM-EYDF-6/125-HE) 

Oplink 98/2 Output Coupler (P/N: SWFC2025LU001) 

Spectra Physics 1 W 975 nm Fiber-Coupled Laser Diode (P/N: EWR-SE) 

Thorlabs 90/10 Output Coupler (P/N: 10202A-90) 
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