
Physics 341 – Advanced Physics Laboratory 
 

The Michelson Interferometer and the Hydrogen-Deuterium Isotope Shift 
 

I. Introduction 
 
     The Michelson interferometer, illustrated below, is a simple instrument capable of highly 
precise measurements.  Invented in 1880 by Albert Michelson and used shortly thereafter in his 
famous experiment to determine the speed and direction of the aether wind, Michelson and 
others soon realized the instrument's great versatility, and the interferometer was soon put to use 
in such diverse applications as measuring the wavelength and spectral width of atomic emission 
lines, defining the meter in terms of the wavelength of light, measuring the diameters of stars 
(via the spatial coherence of starlight), and measuring the thickness and surface features of 
microscopically thin films.  With the invention of the laser in 1960, the field of laser 
interferometry (including the Michelson interferometer as just one configuration) became a 
major branch of optical spectroscopy and an important experimental tool for investigating 
atomic/molecular and condensed matter systems. 
 

 
 

Fig. 1.  Simplified Michelson interferometer.  S = light source, BS = beamsplitter, M1 and 
M2 = mirrors, Sc = viewing screen. 

 
     The operating principle of the Michelson interferometer is easily explained.  Light from a 
source S is split by a beamsplitter BS (half-silvered mirror).  One beam propagates to mirror M1 
and returns to the beamsplitter, the other propagates to mirror  M2 and returns.  The 
superimposed output beams are viewed on screen Sc, where an interference pattern is visible.  If 
the path lengths L1 and L2 differ by a quarter wavelength, then the round-trip propagation 
distance differs by a half wavelength, and the output beams interfere destructively.  If a glass 
plate of varying thickness is placed in one of the arms, then the distance light travels varies 
slightly for different parts of the plate, giving rise to a pattern of bright and dark interference 
fringes corresponding to different thicknesses of the plate. 
     In this experiment, you will illuminate the interferometer with a hydrogen-deuterium lamp.  
The lamp contains an electrically excited gas which is a mixture of hydrogen and deuterium, so 
the interferometer is illuminated simultaneously by the electronic spectra from both atoms.  A 
colored filter is used to isolate the 𝑛𝑛 = 3 to 𝑛𝑛 = 2 transition for both atoms.  Since the transitions 



in hydrogen occur at slightly different wavelengths than in deuterium, the interference patterns of 
the two slightly different wavelengths are shifted spatially.  By measuring the interference 
patterns, you will be able to measure the slight difference in wavelength between hydrogen and 
deuterium. 
 
II.  Prelab Experiment: Interferometric Measurement of the Refractive Index of Optical 
Glass 
 
A. Description of the Experimental Apparatus 
 
In this experiment, we will use the Michelson interferometer to measure the index of refraction 
of a glass slab.  By rotating the slab through a small angle, its effective length can be slightly 
changed, leading to a measurable shift of the interference fringe pattern.  By counting the fringe 
shift and measuring the rotation angle of the slab accurately, one can deduce the refractive index 
of the glass material.  Although straightforward in principle, reckoning the fringe shift involves a 
nontrivial but instructive geometrical calculation to determine the change in optical path length.  
The refractive index of the slab will also be measured in another configuration, by observing the 
transverse deviation of a laser beam propagated through the slab. 
 

 
 

Figure 2.  Michelson interferometer with glass slab (GS) in one arm.  S = laser source, M1 
and M2 = mirrors, BS = beamsplitter, M = micrometer screw held in right-angle clamp, 
RS = rotation stage, clamped to table, θ = angle of rotation from normal incidence, Ap = 
aperture, L = lens, Sc = screen for viewing interference pattern. 

 
Experimental Procedure 
 
1. Mount the glass slab in its holder so that it is in the light path of one arm of the interferometer.  
Check that the fringe pattern is visible on the screen, with one or two dark fringes visible.  Small 
adjustments in the mirror tilts may help optimize the appearance of the interference pattern on 
the screen.  If adjustments of the mirror tilts are ineffective, ask for help, since alignment of the 
interferometer may be needed. 



 
Caution:  Be careful not to touch the delicate first-surface coatings of the mirrors and 
beamsplitter. 
 

 
 

Figure 3. Diagram of the apparatus for rotating a glass slab by a small angle in the light 
path of the Michelson interferometer.  S = glass slab, L = light path, C = clamp, M = 
micrometer screw held in a right-angle clamp, RS = rotation stage clamped to optical 
table, R = rod.  In the picture on the right, the slab is rotated through angle θ given by  tan 
θ = d/r. 

 
2. Adjust the rotation angle of the slab for normal incidence (so that the reflected spots from the 
slab are reflected back to the laser).  Adjust the micrometer M, held in a clamp, to push on the 
rod R holding the slab, as shown in the diagram above.  Record the starting micrometer reading 
when the slab is normal to the incident light.  Position the screen with a reference mark aligned 
along a dark fringe. 
 
3.  Slowly advance the micrometer screw so that it pushes rod R, rotating the slab through a 
small angle θ.  Count the number N of fringes that pass.  When you reach N = 20 (or so) fringes, 
stop and record the micrometer reading.  Carefully measure the distance r from the axis of 
rotation to the point of contact of the micrometer screw with the rod.  The angle θ is given by tan 
θ = d/r, where d is the distance the micrometer screw advanced.  Knowing both N and θ, one can 
determine the index of refraction n of the glass slab.  A derivation is outlined in the next section. 



 
Figure 4. Geometry for calculating the number of fringes appearing as the glass slab is rotated. 
 
B. Calculation of the Refractive Index  
 
     The geometry for the derivation is shown above.  At normal incidence, the light propagates 
along the straight line through points O, A, B, F; when the slab is tilted by angle θ, the light 
propagates along the straight segments OA, AD, EG.  The thickness of the slab is t.  The number 
N of fringes that pass when the slab is tilted is given by 
 2 ∆OPL = 𝜆𝜆 𝑁𝑁         (1) 
where ∆OPL is the change in the optical path length (OPL) of the slab.  Optical path length is 
defined as the product of distance × refractive index, summed over all parts of the light path.  
The OPL before rotation is given by 
 OPL𝑖𝑖 = 𝑛𝑛 𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐵𝐵,        (2) 
where n is the refractive index of the slab, and AB denotes the length of the segment joining 
points A and B.  Likewise, the OPL after rotation is given by 
 OPL𝑓𝑓 = 𝑛𝑛 𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐷𝐷.        (3) 
Now we can express the distances AB, BC, AD, and DE in terms of the thickness t of the slab, the 
incident angle θ, and the refracted angle 𝜙𝜙 using geometry.  First, note that  
 𝐴𝐴𝐴𝐴 = 𝑡𝑡 sec𝜙𝜙,         (4) 
 𝐴𝐴𝐴𝐴 = 𝑡𝑡,         (5) 
 𝐴𝐴𝐷𝐷 = 𝐵𝐵𝐷𝐷 tan𝜃𝜃.        (6) 
By noting the angle ∠𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜃𝜃 − 𝜙𝜙, it can easily be shown that 
 𝐵𝐵𝐷𝐷 = 𝐴𝐴𝐴𝐴 sin(𝜃𝜃 − 𝜙𝜙) = 𝑡𝑡 sec𝜙𝜙 sin(𝜃𝜃 − 𝜙𝜙).    (7) 
Then combining Eqs. (6) and (7), we obtain 
 𝐴𝐴𝐷𝐷 = 𝑡𝑡 sec𝜙𝜙  sin(𝜃𝜃 − 𝜙𝜙) tan𝜃𝜃.      (8) 
Considering the triangle △ 𝐴𝐴𝐵𝐵𝐴𝐴, it follows from geometry that 



 𝐴𝐴𝐵𝐵 = 𝑡𝑡 sec𝜃𝜃 − 𝑡𝑡.        (9) 
Then, combining Eqs. (1), (2), and (3) along with the subsequent relations yields 
 𝜆𝜆 𝑁𝑁

2
= 𝑛𝑛 𝑡𝑡 sec𝜙𝜙 + 𝑡𝑡 sec𝜙𝜙 sin(𝜃𝜃 − 𝜙𝜙) tan𝜃𝜃 − 𝑛𝑛 𝑡𝑡 − 𝑡𝑡 sec𝜃𝜃 + 𝑡𝑡.  (10) 

From trigonometry, it follows that 
 sec𝜙𝜙  tan𝜃𝜃 sin(𝜃𝜃 − 𝜙𝜙) = (tan𝜃𝜃 − tan𝜙𝜙) sin𝜃𝜃    (11) 
Combining the previous two results and simplifying then yields 
 𝜆𝜆 𝑁𝑁

2
= 𝑡𝑡

cos𝜙𝜙
(𝑛𝑛 − sin𝜃𝜃 sin𝜙𝜙) + 𝑡𝑡 (1 − 𝑛𝑛 − cos𝜃𝜃).    (12) 

Snell's law, sin𝜃𝜃 = 𝑛𝑛 sin𝜙𝜙, allows us to eliminate the refracted angle 𝜙𝜙 in favor of the incident 
angle θ, yielding 

 𝜆𝜆 𝑁𝑁
2

= 𝑡𝑡 �
𝑛𝑛−1𝑛𝑛 sin2𝜃𝜃

�1− 1
𝑛𝑛2

sin2𝜃𝜃
� + 𝑡𝑡 (1 − 𝑛𝑛 − cos 𝜃𝜃).     (13) 

which subsequently can be simplified to 
 𝜆𝜆 𝑁𝑁

2
= 𝑡𝑡 √𝑛𝑛2 − sin2𝜃𝜃 + 𝑡𝑡 (1 − 𝑛𝑛 − cos𝜃𝜃).     (14)  

Isolating the radical in the above expression and squaring both sides and solving for n finally 
yields the desired relation 

 𝑛𝑛 =
�𝑡𝑡−12𝜆𝜆 𝑁𝑁�(1−cos𝜃𝜃)

𝑡𝑡 (1−cos𝜃𝜃)−12𝜆𝜆 𝑁𝑁
.        (15) 

In deriving the above, a term of order �𝜆𝜆 𝑁𝑁
2
�
2
was dropped since it is much smaller than other 

terms adding to it.  Eq. (15) allows one to calculate the refractive index n of the glass slab, 
knowing its thickness t, the wavelength λ, and the number N of fringes that pass when the slab is 
rotated by angle θ.  A cautionary note on evaluating Eq. (15) numerically: Since in an 
experiment, θ may be a very small angle so that the term 1 − cos𝜃𝜃 involves the difference of 
quantities both nearly equal to unity, hence it is important to take care to keep enough extra 
digits that accuracy is not compromised (of course, the final result should always be reported 
with an appropriate number of significant digits). 
 
C. Prelab Assignment 
 
Carry out the above-described experiment to determine the refractive index of the glass slab.  
Then answer the following questions. 
 
1. The first question involves working through the derivation presented in Section II B.  Before 
starting, you should carefully read through the derivation up to Eq. 7 and be sure you follow the 
reasoning.  To "derive" the remaining steps, present the necessary intermediate steps, making 
reference to the diagram or any needed auxilliary diagrams you draw. 
a. Derive Eq. 7. 
b. Derive Eq. 9. 
c. Derive Eq. 11. 
d. Derive Eq. 12. 
e. Derive Eq. 13. 
f. Derive Eq. 14. 
g. Derive Eq. 15.   



 
2.  Using your experimental data and Eq. 15, find the refractive index of the glass slab.  Show all 
calculations. 
 
III.  Nuclear Mass and the Hydrogen-Deuterium Isotope Shift 
 
    In 1913, Niels Bohr solved a semiclassical model and was able to account for the energy 
levels the hydrogen atom for the first time, obtaining the famous result 𝐷𝐷𝑛𝑛 = − 𝐸𝐸0

𝑛𝑛2
, where 𝐷𝐷0 =

𝑚𝑚𝑒𝑒(𝑘𝑘 𝑒𝑒2)2

2ℏ2
= 13.61 𝑒𝑒𝑒𝑒 and n is a positive integer, with k the Coulomb’s law constant and 𝑚𝑚𝑒𝑒 the 

electron mass.  A more rigorous approach to obtain the Bohr energies proceeds by solving the 
Schrodinger equation for the Coulomb potential.  If we model the nucleus as immovable and 
fixed at the origin, we obtain the same energies found by Bohr.  In reality, both the electron and 
the nucleus are moving and the Schrodinger equation for this two-body problem can be solved 
exactly.  The following discussion outlines the steps in the solution of the two-body problem.  
We will find that the consideration of the finite nuclear mass leads to a small correction of the 
energy levels of the Bohr model, so that different isotopes of an element are predicted to have 
slightly different spectra. 
    We start by writing the Schrodinger equation for a two-particle system moving in a central 
potential, given by 
 − ℏ2

2𝑚𝑚1
∇12𝜓𝜓 − ℏ2

2𝑚𝑚2
∇22𝜓𝜓 + 𝑒𝑒(|𝑟𝑟1 − 𝑟𝑟2|)𝜓𝜓 = 𝐷𝐷𝜓𝜓, 

where the wavefunction 𝜓𝜓 =  𝜓𝜓(𝑟𝑟1, 𝑟𝑟2) is a function of the coordinates 𝑟𝑟1 and 𝑟𝑟2 of the two 
particles and the potential V depends only on the distance between the particles.  Clearly the 
hydrogen atom is a specific example of the above form with 𝑒𝑒(|𝑟𝑟1 − 𝑟𝑟2|) = − 𝑘𝑘 𝑒𝑒2

|𝑟𝑟1−𝑟𝑟2|.  The 
notation ∇12 represents the derivatives with respect to 𝑟𝑟1 = (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1); that is,  
∇12=  𝜕𝜕

2

𝜕𝜕𝜕𝜕12
+ 𝜕𝜕2

𝜕𝜕𝜕𝜕12
+ 𝜕𝜕2

𝜕𝜕𝜕𝜕12
.  We now change to new variables 𝑟𝑟 and 𝑅𝑅�⃗  defined by 𝑟𝑟 = 𝑟𝑟1 − 𝑟𝑟2 and 

𝑅𝑅�⃗ = 𝑚𝑚1𝑟𝑟1+𝑚𝑚2𝑟𝑟2
𝑚𝑚1+𝑚𝑚2

.  Note that if 𝑟𝑟1 represents the electron and 𝑟𝑟2 the nucleus, 𝑟𝑟 is the position of the 

electron relative to the nucleus and 𝑅𝑅�⃗  is the center-of-mass vector.  Solving for 𝑟𝑟1 and 𝑟𝑟2, we find 
𝑟𝑟1 = 𝑅𝑅�⃗ + 𝑚𝑚2 𝑟𝑟

𝑚𝑚1+𝑚𝑚2
 and 𝑟𝑟2 = 𝑅𝑅�⃗ − 𝑚𝑚1 𝑟𝑟

𝑚𝑚1+𝑚𝑚2
.  Making use of the chain rule, we can show that 

1
𝑚𝑚1
∇12 + 1

𝑚𝑚2
∇22= 1

𝑚𝑚1+𝑚𝑚2
∇𝑐𝑐𝑚𝑚2 + 1

𝜇𝜇
∇𝑟𝑟𝑒𝑒𝑟𝑟2  where ∇𝑐𝑐𝑚𝑚2  involves derivatives with respect to the 

coordinates of 𝑅𝑅�⃗  and ∇𝑟𝑟𝑒𝑒𝑟𝑟2  involves derivatives with respect to the coordinates of 𝑟𝑟.  The 
parameter 𝜇𝜇, called the reduced mass, is given by 1

𝜇𝜇
= 1

𝑚𝑚1
+ 1

𝑚𝑚2
.  In terms of the new variables, 

we can thus write the Schrodinger equation as 
 − ℏ2

2(𝑚𝑚1+𝑚𝑚2)
∇𝑐𝑐𝑚𝑚2 𝜓𝜓 − ℏ2

2𝜇𝜇
∇𝑟𝑟𝑒𝑒𝑟𝑟2 𝜓𝜓 + 𝑒𝑒(𝑟𝑟)𝜓𝜓 = 𝐷𝐷𝜓𝜓. 

    The solution proceeds by the familiar technique of separation of variables; as usual, we take 𝜓𝜓 
to be a product of wavefunctions as 𝜓𝜓 = 𝜓𝜓𝑐𝑐𝑚𝑚(𝑅𝑅�⃗ )𝜓𝜓𝑟𝑟𝑒𝑒𝑟𝑟(𝑟𝑟).  Plugging in and dividing both sides 
by 𝜓𝜓, we find 
 �− ℏ2

2(𝑚𝑚1+𝑚𝑚2)
∇𝑐𝑐𝑐𝑐2 𝜓𝜓𝑐𝑐𝑐𝑐
𝜓𝜓𝑐𝑐𝑐𝑐

� + �− ℏ2

2𝜇𝜇
∇𝑟𝑟𝑒𝑒𝑟𝑟
2 𝜓𝜓𝑟𝑟𝑒𝑒𝑟𝑟
𝜓𝜓𝑟𝑟𝑒𝑒𝑟𝑟

+ 𝑒𝑒(𝑟𝑟)� = 𝐷𝐷. 



Since the first bracketed term is a function of 𝑅𝑅�⃗  only and the second is a function of 𝑟𝑟 only, yet 
the sum is constant (E), we can conclude that each of the bracketed terms is separately constant.  
Thus we can write 
 − ℏ2

2(𝑚𝑚1+𝑚𝑚2)∇𝑐𝑐𝑚𝑚
2 𝜓𝜓𝑐𝑐𝑚𝑚 =  𝐷𝐷1𝜓𝜓𝑐𝑐𝑚𝑚 and  

 − ℏ2

2𝜇𝜇
∇𝑟𝑟𝑒𝑒𝑟𝑟2 𝜓𝜓𝑟𝑟𝑒𝑒𝑟𝑟 +  𝑒𝑒(𝑟𝑟)𝜓𝜓𝑟𝑟𝑒𝑒𝑟𝑟 =  𝐷𝐷2𝜓𝜓𝑟𝑟𝑒𝑒𝑟𝑟, 

with 𝐷𝐷1 + 𝐷𝐷2 = 𝐷𝐷.  Let’s assume the center-of-mass of the sample is stationary in the lab.  The 
second equation then gives the energy spectrum of the hydrogen atom.  The second equation is 
the Schrodinger equation of a (fictitious) particle of mass 𝜇𝜇 moving a fixed potential and the 
solutions are identical to those found by Bohr, but with 𝑚𝑚𝑒𝑒 replaced by 𝜇𝜇. 
 
IV. Experimental Measurement of the H-D Isotope Shift 
 
A. Circular Fringe Pattern 
 
    Light from a spatially extended source produces a set of circular fringes resembling a bullseye 
when the output of the interferometer is viewed with the eye or a telescope.  To understand how 

circular fringes are produced, consider the diagram in Figure 5.   
Light is emitted by an extended source S and, after passing the 
beamsplitter, is incident on mirrors M1 and M2.  In the figure, the two 
perpendicular arms of the interferometer have been depicted as parrallel 
and superimposed and the beamsplitter omitted.  Plane mirror M1 forms 
an image S1 of the source and mirror M2 forms image S2.  Since the 
mirrors are separated by distance d, the images are separated by 2d as 
shown.  The dotted line in the figure indicates the axis of the 
interferometer, perpendicular to the mirrors.  A light ray making angle θ 
with repsect to the axis is reflected at angle θ (law of reflection).  
Parallel rays R1 and R2 emitted at angle θ interfere constructively when 
their path difference (2𝑑𝑑 cos 𝜃𝜃) is an integer number of wavelengths, 
i.e. 2𝑑𝑑 cos 𝜃𝜃 = 𝑚𝑚𝜆𝜆 where m is an integer.  For an extended source, each 
point on the source emits rays in all directions, and different points on 
the source are not synchronized.  Nevertheless, when 2𝑑𝑑 cos𝜃𝜃

𝜆𝜆
 is an 

integer, rays emitted by each point on the source that are split and 
brought together will interfere constructively, so all source points contribute to a bright fringe at 
angle θ.  The system is symmetric about its axis, so the rays at a given angle θ form a cone about 
the axis of symmetry, resulting in a circular fringe pattern. 
 
B. Measuring Small Wavelength Differences 
 
    When the source emits two different wavelengths, two different bullseye interference patterns 
are superposed.  Consider the center of the bullseye pattern at 𝜃𝜃 = 0.  Light of wavelength 𝜆𝜆1 
produces a bright spot when the condition 2𝑑𝑑 = 𝑚𝑚1𝜆𝜆1 is satisfied with 𝑚𝑚1 an integer; likewise, 
light of wavelength 𝜆𝜆2 interferes constructively when 2𝑑𝑑 = 𝑚𝑚2𝜆𝜆2.  Now suppose the path 
difference d is slowly varied by translating one of the mirrors.  Both bullseye pattens vary, with 
new fringes appearing in the center and expanding outward as d is increased.  The fringe patterns 



coincide when 𝑚𝑚1 = 𝑚𝑚2 + 𝑁𝑁, with N an integer.  When the fringe patterns coincide, bright and 
dark fringes of high contrast are visible.  However when the patterns do not coincide, the 
superposition of the patterns results in inexact alignment of the bright fringes of each 
wavelength, causing the appearance of a blurred interference pattern.  When the bright fringes 
from wavelength 𝜆𝜆1 align with the dark fringes from wavelength 𝜆𝜆2, the pattern disappears 
(looks uniformly illuminated)—remember that 𝜆𝜆1 and 𝜆𝜆2 are nearly the same.  The next 
coincidence, after translating the mirror by distance Δ𝑑𝑑, occurs when 𝑚𝑚1 = 𝑚𝑚2 + 𝑁𝑁 + 1.  
Writing 𝑚𝑚1 = 2𝑑𝑑/𝜆𝜆1 and 𝑚𝑚2 = 2𝑑𝑑/𝜆𝜆2, we can express the conditions for the two successive 
coincidences as 

2𝑑𝑑
𝜆𝜆1

= 2𝑑𝑑
𝜆𝜆2

+ 𝑁𝑁  and 2(𝑑𝑑+Δ𝑑𝑑)
𝜆𝜆1

= 2(𝑑𝑑+Δ𝑑𝑑)
𝜆𝜆2

+ 𝑁𝑁 + 1. 

Subtracting the first relation from the second yields 2Δ𝑑𝑑
𝜆𝜆1

= 2Δ𝑑𝑑
𝜆𝜆2

+ 1, which can be rewritten as 
𝜆𝜆2−𝜆𝜆1
𝜆𝜆1𝜆𝜆2

= 1
2Δ𝑑𝑑

. 
Recalling that 𝜆𝜆1 ≈ 𝜆𝜆2 and denoting 𝜆𝜆2 − 𝜆𝜆1 =  ∆𝜆𝜆 yields 

Δ𝜆𝜆 =  𝜆𝜆2

2Δ𝑑𝑑
. 

The above formula allows one to calculate the small difference in wavelength Δ𝜆𝜆 by measuring 
the distance Δ𝑑𝑑 between successive coincidences of the interference pattern. 
 
C. Experimental Set-Up 
 
    The experimental set-up for measuring the wavelength difference between the Hα line for 
hydrogen and deuterium is shown in Fig. 6 below.  The Hα line corresponds to the 𝑛𝑛 = 3 to  
𝑛𝑛 = 2 transition and has an approximate wavelength of 656 nm.   
 

 
Fig. 6 

 
A lamp containing a mixture of hydrogen and deuterium gas excited by an electric discharge is 
used as the light source (Lambda Scientific Model LLE-8).  A red filter F placed just behind the 
lamp aperture is used to isolate the Hα line.  A collimating lens L is used to capture the 
diverging cone of rays from the lamp and render them parallel (collimated).  To accomplish this, 
the lens should be positiioned so that the source is at its focal point.  You may need to measure 
the focal length of the collimating lens in a separate experiment (e.g. imaging winow light on a 



screen).  the source, lens, and interferometer should be positioned at the same height.  Collimated 
light is incident on the beamsplitter BS of the interferometer as usual, and light propagates along 
the two arms before being recombined at the beamsplitter and viewed by observer O.  One of the 
mirrors can be translated using micrometer screw M.  Be very careful not to turn the micrometer 
screw past its allowed travel range.  To measure the coincidences in the interference pattern, 
decide on the direction the mirror will be translated and set the micrometer at the appropriate 
starting position.  Then turn the micrometer slightly in the direction it will move in order to 
eliminate backlash in the micrometer screw mechanism, and then slowly advance the screw 
unidirectionally while observing the interference pattern.  You can measure the micrometer 
positions at the coincidences (best focus) or anti-coincidences (where the interference pattern is 
unobservable).  For best accuracy, advance the micrometer screw unidirectionally, or if the screw 
is reversed, back up enough to pass the backlash and re-advance unidirectionally to the final 
micrometer position; that is, all final screw positions should be recorded with the micrometer 
screw traveling in the same direction.  Several trials may be taken and averaged for greater 
accuracy. 
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