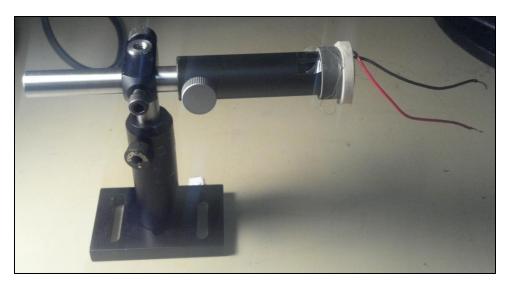

Sagnac Fiber Optic Gyroscope

Materials Science Institute 2012 Alex Muhr Jeff Shores

Sagnac Fiber Optic Gyroscope

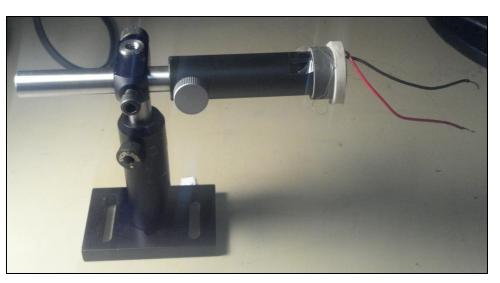
- The Basics
- Improvements
 - Phase Modulator, APC, Isolation
- Phase Modulator
 - Creation
 - Characterization: Mach–Zehnder
 - Application
- Calibration of Sagnac
- Recommendations

Sagnac Fiber Optic Gyroscope

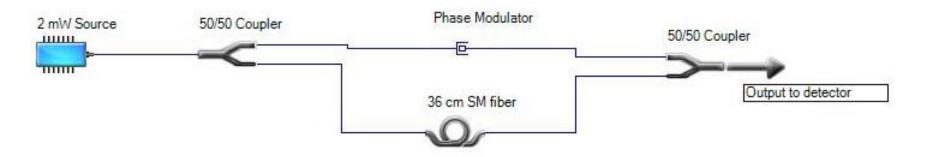

Improvements

- Signal initially very unstable
- High uncertainty in slow rotations (<0.3 rad/s)

Instability Sources	Solutions
Back reflections causing unwanted interference	Replace Flat-Polished Connectors with Angle-Polished Connectors
Any vibration causes signal fluctuation	Isolate system from vibration
Noise in system from various sources (thermal, vibrations, reflections, etc.)	Implement a phase modulator and lock-in amplifier


Phase Modulator

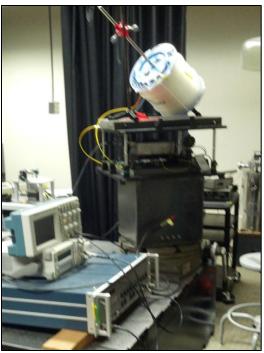
- Fiber wrapped around piezoelectric cylinder
- When voltage is applied to PZT, optical path length through the fiber changes.


Creating the Phase Modulator

- Characterized PZT to determine the ideal number of wraps
- Chemically stripped fiber
- Carefully wrapped the PZT (\approx 4.5 wraps)
- Secured with epoxy

Characterizing the Phase Modulator

- Set up a Mach-Zehnder interferometer
 - Angle–Polished Connectors
 - Coherence length
 - Interference from vibration and thermal fluctuation

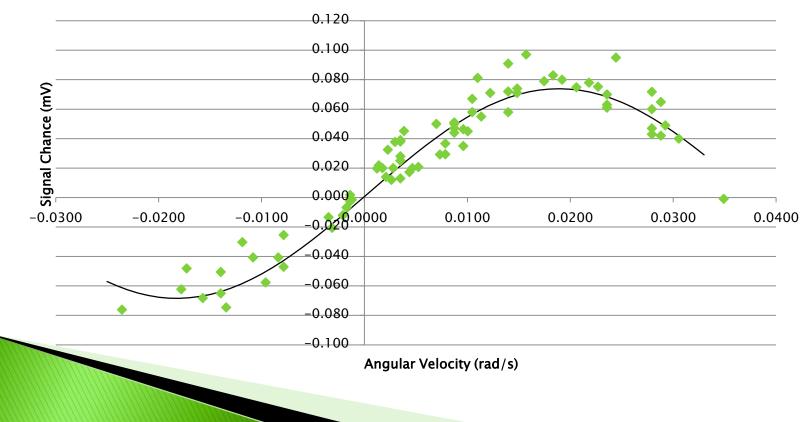

Found that application of $\approx\!18.9V$ creates a 2π phase change

Application of Phase Modulator

- Integrated into Sagnac loop
- Driven to modulate signal for lock in amplifier
 - Frequency determined by loop transit time
 - f=1/transit time=c/nL=9.96 kHz
 - Experimental optimization at 9.92 kHz

Calibration of Sagnac

- Output of photodiode is a voltage
- Need to be able to connect this to a phase change and rotation rate
- Idea: Calibrate using Earth's rotation
 - Varied alignment of Sagnac axis
 - Perpendicular vs parallel
 - Problem: long-term signal instability
 - Unable to reproducibly measure such small rotation



Calibration of Sagnac

- Used rotary table to calibrate at an angular velocity greater than the Earth's.
- > Rotation rate necessary for π phase shift was experimentally found to be 0.0371 rad/s.
- Sagnac equation prediction was 0.0383 rad/s
 - $\phi = 4\pi LRn\Omega/\lambda c$
 - L– length of loop
 - R-radius of coil
- These results match well (3.2% error) given the drift in the system and the inconsistency of rotation.

Sagnac Calibration Data

- Minimum measurable rotation of 0.0012 rad/s
 - 0.3 rad/s in 2011

Sagnac Calibration

Recommendations

- Improve long-term stability to measure even smaller rotations (Earth's is 0.00007 rad/s)
 - Polarizer implementation potential
 - The polarization drift may be causing significant drift
 - Use broader source
 - Shorter coherence length Raleigh scattering and back reflection will average to zero much more quickly
- Develop a better method of rotation
 - Earth's rotation (if system is stabilized)
 - Controllable rotation of rotary table
 - Using sprockets and chain identified in lab notes from McMaster-Carr and stepper motor

References / Additional Information

- R. A. Bergh, H. C. Lefevre, and H. J. Shaw, "All-single-mode fiber-optic gyroscope," Opt. Lett. 6,198 (1981).
- R. A. Bergh, H. C. Lefevre, and H. J. Shaw, "All-single-mode fiber-optic gyroscope with long-term stability," Opt. Lett. 6,502 (1981).
- R. Ulrich, "Fiber-optic rotation sensing with low drift," Opt. Lett. 5, 173 (1980).